login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A039758 Triangle of B-analogs of Stirling numbers of first kind. 2
1, 1, -1, 1, -4, 3, 1, -9, 23, -15, 1, -16, 86, -176, 105, 1, -25, 230, -950, 1689, -945, 1, -36, 505, -3480, 12139, -19524, 10395, 1, -49, 973, -10045, 57379, -177331, 264207, -135135, 1, -64, 1708, -24640, 208054, -1038016, 2924172, -4098240, 2027025, 1, -81, 2796, -53676, 626934, -4574934, 20570444, -53809164, 71697105, -34459425 (list; table; graph; refs; listen; history; text; internal format)
OFFSET

0,5

COMMENTS

Triangle T(n,k), read by rows, given by [1, 0, 1, 0, 1, 0, 1, 0, 1, ...] DELTA [ -1, -2, -3, -4, -5, -6, -7, -8, ...], where DELTA is the operator defined in A084938. - Philippe Deléham, Aug 08 2005

LINKS

Table of n, a(n) for n=0..54.

Ruedi Suter, Two analogues of a classical sequence, J. Integer Sequences, Vol. 3 (2000), #P00.1.8.

FORMULA

T(n,k) = A039757(n,n-k). - Petros Hadjicostas, Jul 12 2020

EXAMPLE

Triangle T(n,k) (with rows n >= 0 and columns k = 0..n) begins:

  1;

  1,  -1;

  1,  -4,   3;

  1,  -9,  23,   -15;

  1, -16,  86,  -176,   105;

  1, -25, 230,  -950,  1689,   -945;

  1, -36, 505, -3480, 12139, -19524, 10395;

... [Edited by Petros Hadjicostas, Jul 12 2020]

PROG

(PARI) row(n)=Vec(prod(i=1, n, 'x-2*i+1)) \\ Petros Hadjicostas, Jul 12 2020

CROSSREFS

Cf. A039757.

Sequence in context: A214859 A123160 A109692 * A157894 A172106 A128813

Adjacent sequences:  A039755 A039756 A039757 * A039759 A039760 A039761

KEYWORD

tabl,sign

AUTHOR

Ruedi Suter (suter(AT)math.ethz.ch)

EXTENSIONS

More terms from Petros Hadjicostas, Jul 12 2020

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified August 10 19:52 EDT 2020. Contains 336381 sequences. (Running on oeis4.)