login
A039660
Related to enumeration of edge-rooted catafusenes.
3
0, 0, 0, 1, 2, 8, 14, 43, 72, 204, 336, 926, 1516, 4144, 6772, 18504, 30236, 82844, 135452, 372581, 609710, 1684220, 2758730, 7652531, 12546332, 34941752, 57337172, 160280987, 263224802, 738363872, 1213502942, 3414804517
OFFSET
1,5
COMMENTS
Let b(n>=0) = 0, 0, 0, 0, 1, 0, 6, 0, 29, 0, 132, 0, 590, 0, 2628, ... be the
"aerated" version of A045445. This sequence is the convolution of A040000 and b. - R. J. Mathar, Jul 30 2019
FORMULA
G.f.: (1+x)[1-6x^2+7x^4-(1-3x^2)sqrt(1-6x^2+5x^4)]/[2x^4(1-x)] (eq. (11) in Cyvin et al.)
CROSSREFS
Sequence in context: A162484 A333575 A259119 * A333053 A333054 A119752
KEYWORD
nonn
AUTHOR
EXTENSIONS
More terms from Emeric Deutsch, Mar 14 2004
STATUS
approved