login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A038990
Expansion of (1-x-x^2+2*x^3) / ((1-x)*(1+x)*(1-3*x+x^2)).
1
1, 2, 5, 14, 37, 98, 257, 674, 1765, 4622, 12101, 31682, 82945, 217154, 568517, 1488398, 3896677, 10201634, 26708225, 69923042, 183060901, 479259662, 1254718085, 3284894594, 8599965697, 22515002498, 58945041797, 154320122894, 404015326885, 1057725857762
OFFSET
0,2
FORMULA
a(n) = -1/2-(-1)^n/10+4*(2*A001906(n+1)-3*A001906(n))/5. - R. J. Mathar, Mar 31 2011
a(0)=1, a(1)=2, a(2)=5, a(3)=14, a(n)=3*a(n-1)-3*a(n-3)+a(n-4). - Harvey P. Dale, Feb 17 2012
a(n) = (-1)*(2^(-1-n)*((-2)^n + 5*2^n - 8*(3-sqrt(5))^n - 8*(3+sqrt(5))^n)) / 5. - Colin Barker, Jul 16 2017
MAPLE
A001906 := proc(n) combinat[fibonacci](2*n) ; end proc:
A038990 := proc(n) -1/2-(-1)^n/10+4*(2*A001906(n+1)-3*A001906(n))/5 ; end proc: # R. J. Mathar, Mar 31 2011
MATHEMATICA
CoefficientList[Series[(1-x-x^2+2x^3)/((1-x)(1+x)(1-3x+x^2)), {x, 0, 30}], x] (* or *) LinearRecurrence[{3, 0, -3, 1}, {1, 2, 5, 14}, 30] (* Harvey P. Dale, Feb 17 2012 *)
PROG
(PARI) Vec((1-x-x^2+2*x^3)/((1-x)*(1+x)*(1-3*x+x^2))+O(x^99)) \\ Charles R Greathouse IV, Sep 27 2012
CROSSREFS
Sequence in context: A030016 A248733 A099485 * A355387 A077938 A077987
KEYWORD
nonn,easy
AUTHOR
STATUS
approved