login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A038717
Triangular array read by rows: T(n,m) = number of ways your team can score m points in n rounds of a soccer competition (loss=0 point, draw=1 point, win=3 points), for n >= 0, 0 <= m <= 3n.
2
1, 1, 1, 0, 1, 1, 2, 1, 2, 2, 0, 1, 1, 3, 3, 4, 6, 3, 3, 3, 0, 1, 1, 4, 6, 8, 13, 12, 10, 12, 6, 4, 4, 0, 1, 1, 5, 10, 15, 25, 31, 30, 35, 30, 20, 20, 10, 5, 5, 0, 1, 1, 6, 15, 26, 45, 66, 76, 90, 96, 80, 75, 60, 35, 30, 15, 6, 6, 0, 1, 1, 7, 21, 42, 77, 126, 168, 211, 252, 252, 245, 231
OFFSET
0,7
COMMENTS
n-th row has 3n+1 entries.
LINKS
Steven R. Finch, P. Sebah and Z.-Q. Bai, Odd Entries in Pascal's Trinomial Triangle, arXiv:0802.2654 [math.NT], 2008.
Szymon Lukaszyk, Four Cubes, arXiv:2007.03782 [math.GM], 2020.
FORMULA
T(n, m) = T(n-1, m) + T(n-1, m-1) + T(n-1, m-3).
G.f.: Sum T(n, m)*z^n*w^m = 1/(1-z(1+w+w^3)). Hence m-th column is a polynomial in n of degree m given by C(n, m) + C(m-2, 1)*C(n, m-2) + C(m-4, 2)*C(n, m-4) + C(m-6, 3)*C(n, m-6) + ... E.g. column 5 is C(n, 5)+3C(n, 3). - N. J. A. Sloane, May 24 2005
EXAMPLE
Triangle begins:
0...1...2...3...4...5...6...7...8...9..10..11..12 points
--------------------------------------------------------
1
1...1...0...1
1...2...1...2...2...0...1
1...3...3...4...6...3...3...3...0...1
1...4...6...8..13..12..10..12...6...4...4...0...1
MATHEMATICA
T[_, 0] = 1;
T[n_, m_] /; 0 <= m <= 3n = T[n, m] = T[n-1, m]+T[n-1, m-1]+T[n-1, m-3];
T[_, _] = 0;
Table[T[n, m], {n, 0, 7}, {m, 0, 3n}] // Flatten (* Jean-François Alcover, Sep 10 2018 *)
CROSSREFS
Sequence in context: A024375 A025075 A175609 * A073267 A159981 A071858
KEYWORD
nonn,tabf
AUTHOR
Floor van Lamoen, May 02 2000
STATUS
approved