login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A038718 Number of permutations P of {1,2,...,n} such that P(1)=1 and |P^-1(i+1)-P^-1(i)| equals 1 or 2 for i=1,2,...,n-1. 19
1, 1, 2, 4, 6, 9, 14, 21, 31, 46, 68, 100, 147, 216, 317, 465, 682, 1000, 1466, 2149, 3150, 4617, 6767, 9918, 14536, 21304, 31223, 45760, 67065, 98289, 144050, 211116, 309406, 453457, 664574, 973981, 1427439, 2092014, 3065996, 4493436, 6585451 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,3

COMMENTS

This sequence is the number of digits of each term of A061583. [From Dmitry Kamenetsky, Jan 17 2009]

LINKS

Table of n, a(n) for n=1..41.

FORMULA

G.f.: (x^2-x+1)/(x^4-x^3+x^2-2x+1). a(n) = a(n-1) + a(n-3) + 1. - Joseph Myers, Feb 03 2004

a(n) = sum_{i=1..n} A058278(i) = A097333(n)-1. [From R. J. Mathar, Oct 16 2010]

MATHEMATICA

Join[{a=1, b=1, c=2}, Table[d=a+c+1; a=b; b=c; c=d, {n, 100}]] (* Vladimir Joseph Stephan Orlovsky, Feb 26 2011*)

LinearRecurrence[{2, -1, 1, -1}, {1, 1, 2, 4}, 50] (* or *) CoefficientList[ Series[(x^2-x+1)/(x^4-x^3+x^2-2x+1), {x, 0, 50}], x] (* Harvey P. Dale, Apr 24 2011 *)

CROSSREFS

Cf. A003274.

Cf. A003410.

Sequence in context: A139135 A097197 A119737 * A042942 A005687 A164139

Adjacent sequences:  A038715 A038716 A038717 * A038719 A038720 A038721

KEYWORD

nonn

AUTHOR

John W. Layman, May 02 2000

EXTENSIONS

More terms from Joseph Myers, Feb 03 2004

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

Content is available under The OEIS End-User License Agreement .

Last modified October 21 06:29 EDT 2014. Contains 248375 sequences.