login
This site is supported by donations to The OEIS Foundation.

 

Logo

Annual Appeal: Please make a donation (tax deductible in USA) to keep the OEIS running. Over 5000 articles have referenced us, often saying "we discovered this result with the help of the OEIS".

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A038528 If n has decimal expansion abc...d, with k digits, let f(n) be obtained by deleting all k's from abc...d, closing up and deleting initial 0's; sequence gives n such that f(f(f(...(n)))) = 0 or empty. 3
1, 12, 20, 21, 22, 123, 132, 133, 203, 213, 223, 230, 231, 232, 300, 301, 303, 312, 313, 320, 321, 322, 330, 331, 333, 1234, 1243, 1244, 1324, 1334, 1342, 1343, 1423, 1424, 1432, 1433, 1442, 1444, 2034, 2043, 2044, 2134, 2143, 2144, 2234 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,2

COMMENTS

The sequence has exactly 14174521 terms, 999999999 is the last and largest. - Reinhard Zumkeller, Jul 04 2012

LINKS

Reinhard Zumkeller, Table of n, a(n) for n = 1..10000

FORMULA

A054055(a(n) = A055642(a(n)). - Reinhard Zumkeller, Jul 04 2012

EXAMPLE

If n=22 (2 digits), f(n) = empty. If n=230 (3 digits), f(n)=20, f(f(n))=0. If n=301 (3 digits), f(n)=1 (1 digit), f(f(n))=empty.

The last 12 terms are: 999999333, 999999900, 999999901, 999999909, 999999912, 999999919, 999999920, 999999921, 999999922, 999999990, 999999991, 999999999.

MATHEMATICA

zeroQ[n_] :=  FixedPoint[ Function[{k}, DeleteCases[id = IntegerDigits[k], Length[id]] // FromDigits[#, 10]&], n] == 0; Select[Range[10^4], zeroQ] (* Jean-Fran├žois Alcover, Dec 10 2014 *)

PROG

(Haskell)

import Data.List ((\\))

a038528 n = a038528_list !! (n-1)

a038528_list = gen ([1], 1) where

   gen (_, 10) = []

   gen (ds, len)

      | len `elem` ds && chi ds

        = foldr (\u v -> u + 10*v) 0 ds : gen (succ (ds, len))

      | otherwise = gen (succ (ds, len))

   chi xs = null ys || ys /= xs && chi ys where

            ys = tr $ filter (/= length xs) xs

            tr zs = if null zs || last zs > 0 then zs else tr $ init zs

   succ ([], len)   = ([1], len + 1)

   succ (d : ds, len)

       | d < len = (head (dropWhile (<= d) a002024_list \\ ds) : ds, len)

       | otherwise = (0 : ds', len') where (ds', len') = succ (ds, len)

-- Reinhard Zumkeller, Jul 04 2012

CROSSREFS

Cf. A038527.

Cf. A002024, A055642, A031298, subsequence of A138166.

Sequence in context: A046418 A171795 A170806 * A052020 A075078 A050421

Adjacent sequences:  A038525 A038526 A038527 * A038529 A038530 A038531

KEYWORD

easy,fini,nonn,base,nice

AUTHOR

Naohiro Nomoto

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy .

Last modified December 5 05:27 EST 2016. Contains 278761 sequences.