login
A037289
Number of commutative rings with n elements.
15
1, 2, 2, 9, 2, 4, 2, 34, 9, 4, 2, 18, 2, 4, 4, 162, 2, 18, 2, 18, 4, 4, 2, 68, 9, 4, 36, 18, 2, 8, 2
OFFSET
1,2
COMMENTS
These rings do not necessarily contain an identity element.
This sequence is multiplicative. See the reference "The Numbers of Small Rings" below, which proves the result for all rings; restricting to commutative rings only makes the proof easier. - Conjecture by Mitch Harris, Apr 19 2005, proof found by Franklin T. Adams-Watters, Jul 10 2012
LINKS
Simon R. Blackburn and K. Robin McLean, The enumeration of finite rings, 2022 preprint. arXiv:2107.13215 [math.CO]
C. Noebauer, Home page [Archived copy as of 2008 from web.archive.org]
Bjorn Poonen, The moduli space of commutative algebras of finite rank, J. Eur. Math. Soc. (JEMS) 10:3 (2008), pp. 817-836. arXiv:0608491 [This contains an error, see Blackburn & McLean]
FORMULA
a(p^n) = p^(2/27 * n^3 + O(n^2.5)), see Blackburn & McLean. - Charles R Greathouse IV, Jul 13 2022
CROSSREFS
Sequence in context: A074961 A359454 A300450 * A037290 A155936 A377296
KEYWORD
nonn,nice,more,hard,mult
AUTHOR
Christian G. Bower, Jun 15 1998
EXTENSIONS
a(16) from Christof Noebauer (christof.noebauer(AT)algebra.uni-linz.ac.at), Sep 29 2000, who reports that the sequence continues a(32) = ? (> 876), a(33) = 4, 4, 4, 81, 2, 4, 4, 68, 2, 8, 2, 18, 18, 4, 2, 324, 9, 18, 4, 18, 2, 72, 4, 68, 4, 4, 2, 36, 2, 4, 18 = a(63), a(64) = ? (> 12696)
STATUS
approved