OFFSET
0,4
COMMENTS
Number of primitive irreducible factors of x^(2n+1) - 1 over integers mod 2. There are no primitive irreducible factors for x^(2n)-1 because it always has the same factors as x^n-1. Considering that A000374 also counts the cycles in the map f(x) = 2x mod n, a(n) is also the number of primitive cycles of that mapping. - T. D. Noe, Aug 01 2003
Equals number of irreducible factors of the cyclotomic polynomial Phi(2n+1,x) over Z/2Z. All factors have the same degree. - T. D. Noe, Mar 01 2008
LINKS
T. D. Noe, Table of n, a(n) for n = 0..10000
Brillhart, John; Lomont, J. S.; Morton, Patrick. Cyclotomic properties of the Rudin-Shapiro polynomials, J. Reine Angew. Math.288 (1976), 37--65. See Table 2. MR0498479 (58 #16589).
Jarkko Peltomäki and Aleksi Saarela, Standard words and solutions of the word equation X_1^2 ... X_n^2 = (X_1 ... X_n)^2, Journal of Combinatorial Theory, Series A (2021) Vol. 178, 105340. See also arXiv:2004.14657 [cs.FL], 2020.
FORMULA
MATHEMATICA
a[n_] := EulerPhi[2n+1]/MultiplicativeOrder[2, 2n+1]; Table[a[n], {n, 0, 100}] (* Jean-François Alcover, Dec 10 2015 *)
PROG
(PARI) a(n)=eulerphi(2*n+1)/znorder(Mod(2, 2*n+1)) \\ Charles R Greathouse IV, Dec 29 2013
CROSSREFS
KEYWORD
nonn
AUTHOR
STATUS
approved