login
A036487
a(n) = floor((n^3)/2).
9
0, 0, 4, 13, 32, 62, 108, 171, 256, 364, 500, 665, 864, 1098, 1372, 1687, 2048, 2456, 2916, 3429, 4000, 4630, 5324, 6083, 6912, 7812, 8788, 9841, 10976, 12194, 13500, 14895, 16384, 17968, 19652, 21437, 23328, 25326, 27436, 29659, 32000
OFFSET
0,3
FORMULA
G.f. x^2*(4 + x + x^2)/((1 + x)*(1 - x)^4). - R. J. Mathar, Jan 29 2011
From Stefano Spezia, Sep 09 2022: (Start)
a(n) = ((-1)^n - 1 + 2*n^3)/4.
E.g.f.: (x*(1 + 3*x + x^2)*cosh(x) - (1 - x - 3*x^2 - x^3)*sinh(x))/2. (End)
MAPLE
[ seq(floor((n^3)/2), n=0..100) ];
MATHEMATICA
A036487[n_]:=Floor[n^3/2]
Floor[Range[0, 40]^3/2] (* or *) LinearRecurrence[{3, -2, -2, 3, -1}, {0, 0, 4, 13, 32}, 50] (* Harvey P. Dale, Jun 24 2018 *)
PROG
(Sage) [floor(n^3/2) for n in range(0, 41)] # Zerinvary Lajos, Dec 02 2009
(PARI) a(n)=n^3\2 \\ Charles R Greathouse IV, Jul 18 2014
CROSSREFS
Cf. A033430 (bisection), A268201 (bisection).
Sequence in context: A226839 A270976 A272510 * A184632 A212747 A011936
KEYWORD
nonn,easy
EXTENSIONS
Corrupted b-file corrected by Michael De Vlieger, Jul 18 2014
STATUS
approved