OFFSET
0,3
LINKS
Enrique PĂ©rez Herrero, Table of n, a(n) for n = 0..10000
Index entries for linear recurrences with constant coefficients, signature (3,-2,-2,3,-1).
FORMULA
G.f. x^2*(4 + x + x^2)/((1 + x)*(1 - x)^4). - R. J. Mathar, Jan 29 2011
From Stefano Spezia, Sep 09 2022: (Start)
a(n) = ((-1)^n - 1 + 2*n^3)/4.
E.g.f.: (x*(1 + 3*x + x^2)*cosh(x) - (1 - x - 3*x^2 - x^3)*sinh(x))/2. (End)
MAPLE
[ seq(floor((n^3)/2), n=0..100) ];
MATHEMATICA
A036487[n_]:=Floor[n^3/2]
Floor[Range[0, 40]^3/2] (* or *) LinearRecurrence[{3, -2, -2, 3, -1}, {0, 0, 4, 13, 32}, 50] (* Harvey P. Dale, Jun 24 2018 *)
PROG
(Sage) [floor(n^3/2) for n in range(0, 41)] # Zerinvary Lajos, Dec 02 2009
(PARI) a(n)=n^3\2 \\ Charles R Greathouse IV, Jul 18 2014
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
EXTENSIONS
Corrupted b-file corrected by Michael De Vlieger, Jul 18 2014
STATUS
approved