login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo

Please make a donation to keep the OEIS running. We are now in our 56th year. In the past year we added 10000 new sequences and reached almost 9000 citations (which often say "discovered thanks to the OEIS").
Other ways to donate

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A036487 a(n) = floor((n^3)/2). 9
0, 0, 4, 13, 32, 62, 108, 171, 256, 364, 500, 665, 864, 1098, 1372, 1687, 2048, 2456, 2916, 3429, 4000, 4630, 5324, 6083, 6912, 7812, 8788, 9841, 10976, 12194, 13500, 14895, 16384, 17968, 19652, 21437, 23328, 25326, 27436, 29659, 32000 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,3

LINKS

Enrique PĂ©rez Herrero, Table of n, a(n) for n = 0..10000

Index entries for linear recurrences with constant coefficients, signature (3,-2,-2,3,-1).

FORMULA

G.f. x^2*(4+x+x^2) / ( (1+x)*(x-1)^4 ). - R. J. Mathar, Jan 29 2011

MAPLE

[ seq(floor((n^3)/2), n=0..100) ];

MATHEMATICA

A036487[n_]:=Floor[n^3/2]

Floor[Range[0, 40]^3/2] (* or *) LinearRecurrence[{3, -2, -2, 3, -1}, {0, 0, 4, 13, 32}, 50] (* Harvey P. Dale, Jun 24 2018 *)

PROG

(Sage) [floor(n^3/2) for n in range(0, 41)] # Zerinvary Lajos, Dec 02 2009

(PARI) a(n)=n^3\2 \\ Charles R Greathouse IV, Jul 18 2014

CROSSREFS

Cf. A033430 (bisection), A268201 (bisection).

Sequence in context: A226839 A270976 A272510 * A184632 A212747 A011936

Adjacent sequences:  A036484 A036485 A036486 * A036488 A036489 A036490

KEYWORD

nonn,easy

AUTHOR

N. J. A. Sloane

EXTENSIONS

Corrupted b-file corrected by Michael De Vlieger, Jul 18 2014

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified December 2 03:22 EST 2020. Contains 338865 sequences. (Running on oeis4.)