OFFSET
1,1
COMMENTS
All terms are a product of at least two terms of A020463. - David A. Corneth, Oct 09 2020
LINKS
David A. Corneth, Table of n, a(n) for n = 1..10000 (first 800 terms from Vincenzo Librandi)
FORMULA
Sum_{n>=1} 1/a(n) = Product_{p in A020463} (p/(p - 1)) - Sum_{p in A020463} 1/p - 1 = 0.3143000293... . - Amiram Eldar, May 22 2022
MATHEMATICA
dpfQ[n_]:=Module[{d=Union[Flatten[IntegerDigits/@Transpose[FactorInteger[n]][[1]]]]}, !PrimeQ[n]&&(d == {3}||d == {7}||d == {3, 7})]; Select[Range[6000], dpfQ] (* Vincenzo Librandi, Aug 25 2013 *)
PROG
(Magma) [n: n in [9..6000] | not IsPrime(n) and forall{f: f in PrimeDivisors(n) | Intseq(f) subset [3, 7]}]; // Bruno Berselli, Aug 26 2013
CROSSREFS
KEYWORD
nonn,easy,base
AUTHOR
Patrick De Geest, Dec 15 1998
STATUS
approved