login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A339728 Odd composite integers m such that A005248(3*m-J(m,5)) == 7 (mod m), where J(m,5) is the Jacobi symbol. 3
9, 21, 27, 63, 161, 189, 207, 261, 287, 323, 341, 377, 671, 783, 861, 901, 987, 1007, 1107, 1269, 1281, 1287, 1449, 1853, 1891, 2071, 2241, 2407, 2431, 2501, 2529, 2567, 2743, 2961, 3201, 3827, 4181, 4623, 5029, 5473, 5611, 5777, 5781, 6119, 6601, 6721, 7161 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,1

COMMENTS

The generalized Pell-Lucas sequences of integer parameters (a,b) defined by V(m+2)=a*V(m+1)-b*V(m) and V(0)=2, V(1)=a, satisfy V(k*p-J(p,D)) == V(k-1) (mod p) whenever p is prime, k is a positive integer, b=1 and D=a^2-4.

The composite integers m with the property V(k*m-J(m,D)) == V(k-1) (mod m) are called generalized Pell-Lucas pseudoprimes of level k+ and parameter a.

Here b=1, a=3, D=5 and k=3, while V(m) recovers A005248(m), with V(2)=7.

REFERENCES

D. Andrica, O. Bagdasar, Recurrent Sequences: Key Results, Applications and Problems. Springer, 2020.

D. Andrica, O. Bagdasar, On some new arithmetic properties of the generalized Lucas sequences, Mediterr. J. Math. (to appear, 2021).

D. Andrica, O. Bagdasar, On generalized pseudoprimality of level k (submitted).

LINKS

Amiram Eldar, Table of n, a(n) for n = 1..1000

Dorin Andrica, Vlad Cri┼čan, and Fawzi Al-Thukair, On Fibonacci and Lucas sequences modulo a prime and primality testing, Arab Journal of Mathematical Sciences, 24(1), 9-15 (2018).

MATHEMATICA

Select[Range[3, 7500, 2], CoprimeQ[#, 5] && CompositeQ[#] && Divisible[LucasL[2*(3*# - JacobiSymbol[#, 5])] - 7, #] &]

CROSSREFS

Cf. A005248, A071904, A339129 (a=3, b=1, k=1), A339521 (a=3, b=1, k=2).

Cf. A339729 (a=5, b=1), A339730 (a=7, b=1).

Sequence in context: A348839 A036316 A340122 * A267216 A039289 A045252

Adjacent sequences:  A339725 A339726 A339727 * A339729 A339730 A339731

KEYWORD

nonn

AUTHOR

Ovidiu Bagdasar, Dec 14 2020

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified October 3 17:14 EDT 2022. Contains 357237 sequences. (Running on oeis4.)