login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A035878 Coordination sequence for diamond structure D^+_4. (Edges defined by l_1 norm = 1.) 2
1, 0, 40, 32, 272, 160, 888, 448, 2080, 960, 4040, 1760, 6960, 2912, 11032, 4480, 16448, 6528, 23400, 9120, 32080, 12320, 42680, 16192, 55392, 20800, 70408, 26208, 87920, 32480, 108120, 39680, 131200, 47872, 157352, 57120, 186768, 67488, 219640, 79040, 256160 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,3

REFERENCES

J. Serra-Sagrista, Enumeration of lattice points in l_1 norm, Information Processing Letters, 76, no. 1-2 (2000), 39-44.

LINKS

Vincenzo Librandi, Table of n, a(n) for n = 0..1000

J. H. Conway and N. J. A. Sloane, Low-Dimensional Lattices VII: Coordination Sequences, Proc. Royal Soc. London, A453 (1997), 2369-2389 (pdf).

Index entries for linear recurrences with constant coefficients, signature (0,4,0,-6,0,4,0,-1).

FORMULA

For n>0, a(n) = ( 2n^2 + 1 + (n^2+2)*(-1)^n ) * 4n/3.

G.f.: (x^8+36*x^6+32*x^5+118*x^4+32*x^3+36*x^2+1) / ((x-1)^4*(x+1)^4). [Colin Barker, Nov 18 2012]

MAPLE

n := 4; A035878 := proc(m) global n; local k, t1; t1 := 2^(n-1)*binomial((n+2*m)/2-1, n-1); if m mod 2 = 0 then t1 := t1+add(2^k*binomial(n, k)*binomial(m-1, k-1), k=0..n); fi; t1; end;

MATHEMATICA

f[m_, n_] := 2^(n-1) *Binomial[(n + 2*m)/2 - 1, n - 1] + If[EvenQ[m], 2 *n* Hypergeometric2F1[1-m, 1-n, 2, 2], 0]; f[0, _] = 1; Table[f[m, 4], {m, 0, 32}] (* Jean-Fran├žois Alcover, Apr 18 2013, after Maple *)

CoefficientList[Series[(x^8 + 36 x^6 + 32 x^5 + 118 x^4 + 32 x^3 + 36 x^2 + 1)/((x - 1)^4 (x + 1)^4), {x, 0, 50}], x] (* Vincenzo Librandi, Oct 21 2013 *)

CROSSREFS

Sequence in context: A163956 A229661 A070724 * A022996 A023482 A273770

Adjacent sequences:  A035875 A035876 A035877 * A035879 A035880 A035881

KEYWORD

nonn,easy

AUTHOR

J. Serra-Sagrista (jserra(AT)ccd.uab.es) Recomputed by N. J. A. Sloane Nov 27 1998.

EXTENSIONS

More terms from Vincenzo Librandi, Oct 21 2013

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy .

Last modified September 26 15:27 EDT 2017. Contains 292531 sequences.