login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A035600 Number of points of L1 norm 6 in cubic lattice Z^n. 3
0, 2, 24, 146, 608, 1970, 5336, 12642, 27008, 53154, 97880, 170610, 284000, 454610, 703640, 1057730, 1549824, 2220098, 3116952, 4298066, 5831520, 7796978, 10286936, 13408034, 17282432, 22049250, 27866072, 34910514, 43381856, 53502738, 65520920, 79711106 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,2

REFERENCES

J. Serra-Sagrista, Enumeration of lattice points in l_1 norm, Information Processing Letters, 76, no. 1-2 (2000), 39-44.

LINKS

Vincenzo Librandi, Table of n, a(n) for n = 0..1000

J. H. Conway and N. J. A. Sloane, Low-Dimensional Lattices VII: Coordination Sequences, Proc. Royal Soc. London, A453 (1997), 2369-2389 (pdf).

M. Janjic and B. Petkovic, A Counting Function, arXiv preprint arXiv:1301.4550, 2013. - From N. J. A. Sloane, Feb 13 2013

M. Janjic, B. Petkovic, A Counting Function Generalizing Binomial Coefficients and Some Other Classes of Integers, J. Int. Seq. 17 (2014) # 14.3.5

Index entries for linear recurrences with constant coefficients, signature (7,-21,35,-35,21,-7,1).

FORMULA

a(n)= ( 4*n^6 +40*n^4 +46*n^2 )/45. - Frank Ellermann, Mar 16 2002

G.f.: 2*x*(1+x)^5/(1-x)^7. - Colin Barker, Apr 15 2012

a(n) = 2*A069039(n). - R. J. Mathar, Dec 10 2013

MAPLE

f := proc(d, m) local i; sum( 2^i*binomial(d, i)*binomial(m-1, i-1), i=1..min(d, m)); end; # n=dimension, m=norm

MATHEMATICA

CoefficientList[Series[2*x*(1+x)^5/(1-x)^7, {x, 0, 33}], x] (* Vincenzo Librandi, Apr 23 2012 *)

PROG

(PARI) a(n)=(4*n^6+40*n^4+46*n^2)/45 \\ Charles R Greathouse IV, Dec 07 2011

(MAGMA)[( 4*n^6 +40*n^4 +46*n^2 )/45: n in [0..30]]; // Vincenzo Librandi, Apr 23 2012

CROSSREFS

Cf. A035596-A035607.

Sequence in context: A000185 A264566 A163752 * A189247 A234352 A241623

Adjacent sequences:  A035597 A035598 A035599 * A035601 A035602 A035603

KEYWORD

nonn,easy

AUTHOR

N. J. A. Sloane.

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy .

Last modified February 20 14:53 EST 2018. Contains 299380 sequences. (Running on oeis4.)