login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A035348
Triangle of a(n,k) = number of k-member minimal covers of an n-set (n >= k >= 1).
13
1, 1, 1, 1, 6, 1, 1, 25, 22, 1, 1, 90, 305, 65, 1, 1, 301, 3410, 2540, 171, 1, 1, 966, 33621, 77350, 17066, 420, 1, 1, 3025, 305382, 2022951, 1298346, 100814, 988, 1, 1, 9330, 2619625, 47708115, 83384427, 18151560, 549102, 2259, 1
OFFSET
1,5
COMMENTS
These are what Clarke calls "Minimal disordered k-covers of labeled n-set".
LINKS
R. J. Clarke, Covering a set by subsets, Discrete Math., 81 (1990), 147-152.
T. Hearne and C. G. Wagner, Minimal covers of finite sets, Discr. Math. 5 (1973), 247-251.
A. J. Macula, Lewis Carroll and the enumeration of minimal covers, Math. Mag., 68 (1995), 269-274.
Eric Weisstein's World of Mathematics, Minimal Cover
FORMULA
a(n,k) = Sum_{j >= 0} (-1)^j * binomial(k,j) * (2^k-1-j)^n. [Hearne-Wagner]
a(n,k) = (1/k!) * Sum_{j >= k} binomial(2^k-k-1,j-k)*j!*Stirling2(n,j). [Macula]
E.g.f.: Sum_{n>=0} (exp(y)-1)^n*exp(y*(2^n-n-1))*x^n/n!. - Vladeta Jovovic, May 08 2004
EXAMPLE
Triangle begins:
1;
1, 1;
1, 6, 1;
1, 25, 22, 1;
1, 90, 305, 65, 1,
1, 301, 3410, 2540, 171, 1;
1, 966, 33621, 77350, 17066, 420, 1;
1, 3025, 305382, 2022951, 1298346, 100814, 988, 1;
...
MAPLE
a:= (n, k)-> add(binomial(2^k-k-1, m-k)*m!
*Stirling2(n, m), m=k..min(n, 2^k-1))/k!:
seq(seq(a(n, k), k=1..n), n=1..12); # Alois P. Heinz, Jul 02 2013
MATHEMATICA
a[n_, k_] := Sum[ (-1)^i*(2^k-i-1)^n / (i!*(k-i)!), {i, 0, k}]; Flatten[ Table[ a[n, k], {n, 1, 9}, {k, 1, n}]] (* Jean-François Alcover, Dec 13 2011, after PARI *)
PROG
(PARI) {a(n, k) = sum(i=0, k, (-1)^i * binomial(k, i) * (2^k-1-i)^n) / k!} /* Michael Somos, Aug 05 1999 */
CROSSREFS
Row sums are A046165. Cf. A049055, A003465, A002177.
Sequence in context: A173882 A174045 A169660 * A140945 A141688 A166960
KEYWORD
nonn,tabl,easy,nice
EXTENSIONS
Entry improved by Michael Somos
Explicit formulas added by N. J. A. Sloane, Aug 05 2011
STATUS
approved