OFFSET
1,5
COMMENTS
These are what Clarke calls "Minimal disordered k-covers of labeled n-set".
LINKS
Alois P. Heinz, Rows n = 1..75, flattened
R. J. Clarke, Covering a set by subsets, Discrete Math., 81 (1990), 147-152.
T. Hearne and C. G. Wagner, Minimal covers of finite sets, Discr. Math. 5 (1973), 247-251.
A. J. Macula, Lewis Carroll and the enumeration of minimal covers, Math. Mag., 68 (1995), 269-274.
Eric Weisstein's World of Mathematics, Minimal Cover
FORMULA
a(n,k) = Sum_{j >= 0} (-1)^j * binomial(k,j) * (2^k-1-j)^n. [Hearne-Wagner]
a(n,k) = (1/k!) * Sum_{j >= k} binomial(2^k-k-1,j-k)*j!*Stirling2(n,j). [Macula]
E.g.f.: Sum_{n>=0} (exp(y)-1)^n*exp(y*(2^n-n-1))*x^n/n!. - Vladeta Jovovic, May 08 2004
EXAMPLE
Triangle begins:
1;
1, 1;
1, 6, 1;
1, 25, 22, 1;
1, 90, 305, 65, 1,
1, 301, 3410, 2540, 171, 1;
1, 966, 33621, 77350, 17066, 420, 1;
1, 3025, 305382, 2022951, 1298346, 100814, 988, 1;
...
MAPLE
a:= (n, k)-> add(binomial(2^k-k-1, m-k)*m!
*Stirling2(n, m), m=k..min(n, 2^k-1))/k!:
seq(seq(a(n, k), k=1..n), n=1..12); # Alois P. Heinz, Jul 02 2013
MATHEMATICA
a[n_, k_] := Sum[ (-1)^i*(2^k-i-1)^n / (i!*(k-i)!), {i, 0, k}]; Flatten[ Table[ a[n, k], {n, 1, 9}, {k, 1, n}]] (* Jean-François Alcover, Dec 13 2011, after PARI *)
PROG
(PARI) {a(n, k) = sum(i=0, k, (-1)^i * binomial(k, i) * (2^k-1-i)^n) / k!} /* Michael Somos, Aug 05 1999 */
CROSSREFS
KEYWORD
AUTHOR
EXTENSIONS
Entry improved by Michael Somos
Explicit formulas added by N. J. A. Sloane, Aug 05 2011
STATUS
approved