login
A035198
From a Dirichlet series.
0
1, 9, 17, 25, 41, 73, 81, 89, 97, 113, 121, 137, 153, 169, 193, 225, 233, 241, 257, 281, 289, 313, 337, 353, 361, 369, 401, 409, 425, 433, 449, 457, 521, 569, 577, 593, 601, 617, 625, 641, 657, 673, 697, 729, 761, 769, 801, 809, 841, 857, 873, 881, 929, 937
OFFSET
0,2
COMMENTS
Contribution from R. J. Mathar, Jul 16 2010: (Start)
The Dirichlet function is (z_1(s))^2*z_3(2*s)*z_5(2*s) = 1+ 2/9^s+4/17^s+2/25^s+4/41^s+..,
where z_1(s) = prod_{p in A007519} Zeta(s,p) = 1+2/17^s+2/41^s+2/73^s+ ...(see A004625),
z_3(s) = prod_{p in A007520} Zeta(s,p) = 1+2/3^s+2/9^s+2/11^s+2/19^s+2/27^s+4/33^s+..,
z_5(s) = prod_{p in A007521} Zeta(s,p) = 1+2/5^s+2/13^s+...+4/65^s+2/101^s+..., Zeta(s,p)=(1+p^(-s))/(1-p^(-s)). (End)
LINKS
P. A. B. Pleasants, M. Baake, J. Roth, Planar coincidences for N-fold symmetry J. Math. Phys. 37 (1996) 1029.
CROSSREFS
Sequence in context: A226323 A211432 A211422 * A271186 A253705 A056233
KEYWORD
nonn,easy
AUTHOR
EXTENSIONS
More terms from R. J. Mathar, Jul 16 2010
More terms from Sean A. Irvine, Sep 29 2020
STATUS
approved