login
A035201
Coefficients in expansion of Dirichlet series Product_p (1-(Kronecker(m,p)+1)*p^(-s)+Kronecker(m,p)*p^(-2s))^(-1) for m = 19.
2
1, 0, 2, 1, 2, 0, 0, 0, 3, 0, 0, 2, 0, 0, 4, 1, 2, 0, 1, 2, 0, 0, 0, 0, 3, 0, 4, 0, 0, 0, 2, 0, 0, 0, 0, 3, 0, 0, 0, 0, 0, 0, 0, 0, 6, 0, 0, 2, 1, 0, 4, 0, 0, 0, 0, 0, 2, 0, 2, 4, 2, 0, 0, 1, 0, 0, 2, 2, 0, 0, 2, 0, 2, 0, 6, 1, 0, 0, 2, 2, 5
OFFSET
1,3
LINKS
FORMULA
From Amiram Eldar, Nov 19 2023: (Start)
a(n) = Sum_{d|n} Kronecker(19, d).
Multiplicative with a(19^e) = 1, a(p^e) = (1+(-1)^e)/2 if Kronecker(19, p) = -1 (p is in A038892), and a(p^e) = e+1 if Kronecker(19, p) = 1 (p is in A297175).
Asymptotic mean: Limit_{m->oo} (1/m) * Sum_{k=1..m} a(k) = 2*log(39*sqrt(19)+170)/(3*sqrt(19)) = 0.891499901309... . (End)
MATHEMATICA
a[n_] := DivisorSum[n, KroneckerSymbol[19, #] &]; Array[a, 100] (* Amiram Eldar, Nov 19 2023 *)
PROG
(PARI) my(m = 19); direuler(p=2, 101, 1/(1-(kronecker(m, p)*(X-X^2))-X))
(PARI) a(n) = sumdiv(n, d, kronecker(19, d)); \\ Amiram Eldar, Nov 19 2023
CROSSREFS
Sequence in context: A065040 A284688 A057595 * A035179 A035161 A352565
KEYWORD
nonn,easy,mult
STATUS
approved