

A034738


Dirichlet convolution of b_n = 2^(n1) with phi(n).


10



1, 3, 6, 12, 20, 42, 70, 144, 270, 540, 1034, 2112, 4108, 8274, 16440, 32928, 65552, 131418, 262162, 524880, 1048740, 2098206, 4194326, 8391024, 16777300, 33558564, 67109418, 134226120, 268435484, 536888520, 1073741854, 2147516736
(list;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

1,2


COMMENTS

Sum of GCD's of parts in all compositions of n.  Vladeta Jovovic, Aug 13 2003
From Petros Hadjicostas, Dec 07 2017: (Start)
It also equals the sum of all lengths of all cyclic compositions of n. This was proved in Perez (2008).
The bivariate g.f. for the number b(n,k) of all cyclic of compositions of n with k parts is Sum_{n,k>=1} b(n,k)*x^n*y^k = Sum_{s>=1} (phi(s)/s)*log(1  y^s*Sum_{t>=1} x^{s*t}) = Sum_{s>=1} (phi(s)/s)*log(1  y^s*x^s/(1x^s)). See, for example, Hadjicostas (2016). Differentiating w.r.t. y and setting y = 1, we get Sum_{n>=1} a(n)*x^n = Sum_{n>=1} (Sum_{k=1..n} b(n,k)*k)*x^n = Sum_{s>=1} phi(s)*x^s/(12*x^s).
(End)


LINKS

Amiram Eldar, Table of n, a(n) for n = 1..3322
P. Hadjicostas, Cyclic compositions of a positive integer with parts avoiding an arithmetic sequence, J. Integer Sequences 19 (2016), Article 16.8.2.
R. A. Perez, Compositions versus cyclic compositions, JP Journal of Algebra, Number Theory and Applications, Vol. 12, Issue 1 (2008), pp. 4148.


FORMULA

a(n) = (1/2)* Sum_{dn} phi(d)*2^(n/d), n >= 1.
G.f.: Sum_{s>=1} phi(s)*x^s/(12*x^s).  Petros Hadjicostas, Dec 07 2017
a(n) ~ 2^(n1).  Vaclav Kotesovec, Feb 07 2019


EXAMPLE

For the compositions of n=4 we have a(4) = gcd(4) + gcd(1,3) + gcd(3,1) + gcd(2,2) + gcd(2,1,1) + gcd(1,2,1) + gcd(1,1,2) + gcd(1,1,1,1) = 4 + 1 + 1 + 2 + 1 + 1 + 1 + 1 = 12. Also, for cyclic compositions of n=4, we have length(4) + length(1,3) + length(2,2) + length(1,1,2) + length(1,1,1,1) = 1 + 2 + 2 + 3 + 4 = 12.


MATHEMATICA

Table[Sum[EulerPhi[d]*2^(n/d1), {d, Divisors[n]}], {n, 1, 40}] (* Vaclav Kotesovec, Feb 07 2019 *)


CROSSREFS

Equals A053635 / 2.
Cf. A000740, A078392.
Sequence in context: A038577 A028925 A028924 * A054064 A246866 A053479
Adjacent sequences: A034735 A034736 A034737 * A034739 A034740 A034741


KEYWORD

nonn


AUTHOR

Erich Friedman


STATUS

approved



