This site is supported by donations to The OEIS Foundation.



Annual appeal: Please make a donation to keep the OEIS running! Over 6000 articles have referenced us, often saying "we discovered this result with the help of the OEIS".
Other ways to donate

(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A034414 Leading term in extremal weight enumerator of doubly-even binary self-dual code of length 24n. 4
1, 759, 17296, 249849, 3217056, 39703755, 481008528, 5776211364, 69065734464, 824142912363, 9826364199840, 117145945726810, 1396918583188128, 16665451879695801, 198937019774252928 (list; graph; refs; listen; history; text; internal format)



The term after the leading nonzero term eventually becomes negative and so for large n the extremal codes do not exist (see references, also A034415).


F. J. MacWilliams and N. J. A. Sloane, The Theory of Error-Correcting Codes, Elsevier-North Holland, 1978, see Theorem 13, p. 624.

C. L. Mallows and N. J. A. Sloane, An Upper Bound for Self-Dual Codes, Information and Control, 22 (1973), 188-200.


N. J. A. Sloane, Table of n, a(n) for n = 0..250

G. Nebe, E. M. Rains and N. J. A. Sloane, Self-Dual Codes and Invariant Theory, Springer, Berlin, 2006.

E. M. Rains and N. J. A. Sloane, Self-dual codes, pp. 177-294 of Handbook of Coding Theory, Elsevier, 1998 (Abstract, pdf, ps).

N. J. A. Sloane, My favorite integer sequences, in Sequences and their Applications (Proceedings of SETA '98).


a(24n) = C(24n, 5)*C(5n-2, n-1)/C(4n+4, 5).


At length 24, the extremal weight enumerator is 1+759*x^8+2576*x^12+..., with leading coefficient 759; this is the weight enumerator of the binary Golay code.


# Extremal weight enumerators:

kernelopts(printbytes=false): interface(screenwidth=200);

W0:=1; f:=1+14*x+x^2; f:=f^3; g:=x*(1-x)^4;

for mu from 1 to 100 do

# set max deg

md:=mu+3; W0:=series(f^mu, x, md): h:=series(g/f, x, md): A:=series(W0, x, md): Z:=A:

for i from 1 to mu do

Z:=series(Z*h, x, md); A:=series(A-coeff(A, x, i)*Z, x, md); od: lprint(A);



a[n_] := 18(6n-1)(8n-1)(12n-1)(24n-1)Binomial[5n-2, n-1]/((n+1)(2n+1)(4n+1)(4n+3)); a[0] = 1; Table[a[n], {n, 0, 14}](* Jean-Fran├žois Alcover, Oct 06 2011, after formula *)


Cf. A034415 (second coefficient, which becmes negative), A001380, A034597.

Sequence in context: A001380 A001920 A225022 * A157983 A014747 A258135

Adjacent sequences:  A034411 A034412 A034413 * A034415 A034416 A034417




N. J. A. Sloane.



Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy .

Last modified November 19 04:01 EST 2017. Contains 294912 sequences.