This site is supported by donations to The OEIS Foundation.



Annual Appeal: Today, Nov 11 2014, is the 4th anniversary of the launch of the new OEIS web site. 70,000 sequences have been added in these four years, all edited by volunteers. Please make a donation (tax deductible in the US) to help keep the OEIS running.

(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A001380 Weight distribution of binary Golay code of length 24. 9
1, 0, 759, 2576, 759, 0, 1 (list; graph; refs; listen; history; text; internal format)



J. H. Conway and N. J. A. Sloane, Orbit and coset analysis of the Golay and related codes, IEEE Trans. Inform. Theory, 36 (1990), 1038-1050.

J. H. Conway and N. J. A. Sloane, "Sphere Packings, Lattices and Groups", Springer-Verlag, p. 84.

W. Ebeling, Lattices and Codes, Vieweg; 2nd ed., 2002, see p. 71.

F. J. MacWilliams and N. J. A. Sloane, The Theory of Error-Correcting Codes, Elsevier-North Holland, 1978, p. 67.


Table of n, a(n) for n=0..6.

E. M. Rains and N. J. A. Sloane, Self-dual codes, pp. 177-294 of Handbook of Coding Theory, Elsevier, 1998 (Abstract, pdf, ps).


g24 := x^24+759*x^16*y^8+759*x^8*y^16+2576*x^12*y^12+y^24; e8 := x^8+14*x^4*y^4+y^8; d:=n->x^(n mod 2)*(1/2)*( (x^2+y^2)^floor((n)/2)+(x^2-y^2)^floor((n)/2));


Cf. A002289, A034414, A034415.

Sequence in context: A157830 A105547 A001293 * A001920 A225022 A034414

Adjacent sequences:  A001377 A001378 A001379 * A001381 A001382 A001383




N. J. A. Sloane.



Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

Content is available under The OEIS End-User License Agreement .

Last modified December 21 20:27 EST 2014. Contains 252326 sequences.