login
A033627
0-additive sequence: not the sum of any previous pair.
35
1, 2, 4, 7, 10, 13, 16, 19, 22, 25, 28, 31, 34, 37, 40, 43, 46, 49, 52, 55, 58, 61, 64, 67, 70, 73, 76, 79, 82, 85, 88, 91, 94, 97, 100, 103, 106, 109, 112, 115, 118, 121, 124, 127, 130, 133, 136, 139, 142, 145, 148, 151, 154, 157, 160, 163, 166, 169, 172, 175
OFFSET
1,2
COMMENTS
Conjecture: a(n+1) is the number of distinct numbers of steps required for the last n digits of integers to repeat themselves by iterating the map m -> m^2 + 1. - Ya-Ping Lu, Oct 19 2021
REFERENCES
R. K. Guy, Unsolved Problems in Number Theory, C4
LINKS
I. Dolinka, J. East and R. D. Gray, Motzkin monoids and partial Brauer monoids, arXiv preprint arXiv:1512.02279 [math.GR], 2015 (A sequence in Table 5 appears to match this. - N. J. A. Sloane, Sep 17 2016)
Eric Weisstein's World of Mathematics, Stöhr Sequence
FORMULA
2 together with numbers of form 3k+1.
From Gary W. Adamson, May 10 2008: (Start)
Equals binomial transform of [1, 1, 1, 0, -1, 2, -3, 4, -5, 6, -7, ...].
Equals sum of antidiagonal terms of the following arithmetic array: 1, 1, 1, 1, 1, ... 1, 2, 3, 4, 5, ... 1, 3, 5, 7, 9, ... . (End)
From Colin Barker, Sep 19 2012: (Start)
a(n) = 3*n - 5, for n > 2.
a(n) = 2*a(n-1) - a(n-2), for n > 4;
G.f.: x*(1+x^2+x^3)/(1-x)^2. (End)
E.g.f.: 5 + 3*x + x^2/2 + exp(x)*(3*x - 5). - Stefano Spezia, Apr 15 2023
MATHEMATICA
Join[{1, 2}, Range[4, 200, 3]] (* Vladimir Joseph Stephan Orlovsky, Jan 27 2012 *)
f[s_List] := Block[{k = s[[-1]] + 1, ss = Union[ Plus @@@ Subsets[s, {2}]]}, While[ MemberQ[ ss, k], k++]; Append[ s, k]]; Nest[f, {1}, 70] (* Robert G. Wilson v, Jun 23 2014 *)
CoefficientList[Series[x(1+x^2+x^3)/(1-x)^2 , {x, 0, 70}], x] (* Stefano Spezia, Oct 04 2018 *)
PROG
(Haskell)
import Data.List ((\\))
a033627 n = a033627_list !! (n-1)
a033627_list = f [1..] [] where
f (x:xs) ys = x : f (xs \\ (map (+ x) ys)) (x:ys)
-- Reinhard Zumkeller, Jan 11 2012
(PARI) a(n)=if(n>2, 3*n-5, n) \\ Charles R Greathouse IV, Sep 01 2016
CROSSREFS
See A244151 for another version.
Sequence in context: A190279 A186325 A272059 * A066512 A304116 A226596
KEYWORD
nonn,easy
AUTHOR
STATUS
approved