login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A033202
Primes of form x^2+93*y^2.
3
97, 109, 157, 193, 349, 373, 397, 421, 541, 577, 661, 733, 769, 853, 877, 937, 997, 1033, 1093, 1117, 1213, 1237, 1249, 1321, 1489, 1597, 1609, 1621, 1657, 1693, 1741, 1777, 1861, 1993, 2017, 2029, 2053, 2113, 2221, 2281, 2341, 2389, 2437, 2521, 2593, 2713, 2797, 2857, 2953
OFFSET
1,1
REFERENCES
David A. Cox, "Primes of the Form x^2 + n y^2", Wiley, 1989.
LINKS
Vincenzo Librandi and Ray Chandler, Table of n, a(n) for n = 1..10000 [First 1000 terms from Vincenzo Librandi]
N. J. A. Sloane et al., Binary Quadratic Forms and OEIS (Index to related sequences, programs, references)
FORMULA
The primes are congruent to {1, 25, 49, 97, 109, 121, 133, 157, 169, 193, 205, 253, 289, 349, 361} (mod 372). - T. D. Noe, Apr 29 2008
MATHEMATICA
QuadPrimes2[1, 0, 93, 10000] (* see A106856 *)
Select[Prime@Range[500], MemberQ[{1, 25, 49, 97, 109, 121, 133, 157, 169, 193, 205, 253, 289, 349, 361}, Mod[#, 372]] &] (* Vincenzo Librandi, Jul 02 2016 *)
PROG
(Magma) [p: p in PrimesUpTo(3000) | p mod 372 in {1, 25, 49, 97, 109, 121, 133, 157, 169, 193, 205, 253, 289, 349, 361}]; // Vincenzo Librandi, Jul 02 2016
(Magma) [p: p in PrimesUpTo(3000) | NormEquation(93, p) eq true]; // Bruno Berselli, Jul 03 2016
CROSSREFS
Cf. A139643.
Sequence in context: A346021 A232767 A039490 * A160032 A136477 A078494
KEYWORD
nonn,easy
AUTHOR
STATUS
approved