login
A033144
Base 8 digits are, in order, the first n terms of the periodic sequence with initial period 1,0,0.
2
1, 8, 64, 513, 4104, 32832, 262657, 2101256, 16810048, 134480385, 1075843080, 8606744640, 68853957121, 550831656968, 4406653255744, 35253226045953, 282025808367624, 2256206466940992, 18049651735527937, 144397213884223496, 1155177711073787968
OFFSET
1,2
FORMULA
a(n) = 8*a(n-1) + a(n-3) - 8*a(n-4).
G.f.: x / ((x-1)*(8*x-1)*(x^2+x+1)). - Colin Barker, Apr 30 2014
a(n) = round( (64/511)*8^n ). - Tani Akinari, Jul 15 2014
MATHEMATICA
Module[{nn=30, d}, d=PadRight[{}, nn, {1, 0, 0}]; Table[FromDigits[Take[d, n], 8], {n, nn}]] (* or *) LinearRecurrence[{8, 0, 1, -8}, {1, 8, 64, 513}, 50] (* Harvey P. Dale, Nov 13 2013 *)
CoefficientList[Series[1/((x - 1) (8 x - 1) (x^2 + x + 1)), {x, 0, 40}], x] (* Vincenzo Librandi, May 01 2014 *)
PROG
(PARI) Vec(x/((x-1)*(8*x-1)*(x^2+x+1)) + O(x^100)) \\ Colin Barker, Apr 30 2014
CROSSREFS
Sequence in context: A074113 A074116 A245852 * A238300 A344271 A144317
KEYWORD
nonn,base,easy
EXTENSIONS
More terms from Harvey P. Dale, Nov 13 2013
STATUS
approved