OFFSET
0,2
LINKS
Fung Lam, Table of n, a(n) for n = 0..1000
FORMULA
G.f.: (G.f. of A107841)^4.
Recurrence: (n+4)*a(n) = (8-n)*a(n-8) + 4*(4*n-26)*a(n-7) + 64*(5-n)*a(n-6) + 8*(2*n-7)*a(n-5) + 194*(n-2)*a(n-4) + 8*(2*n-1)*a(n-3) - 64*(n+1)*a(n-2) + 8*(2*n+5)*a(n-1), n>=8.
Recurrence (of order 2): n*(n+4)*(2*n+1)*a(n) = 20*n*(n+1)*(n+2)*a(n-1) - (n-2)*(n+2)*(2*n+3)*a(n-2). - Vaclav Kotesovec, Feb 27 2014
a(n) ~ 2*sqrt(35280+14403*sqrt(6)) * (5+2*sqrt(6))^n / (27 * sqrt(Pi) * n^(3/2)). - Vaclav Kotesovec, Feb 27 2014
MATHEMATICA
CoefficientList[Series[((1+x-Sqrt[1-10*x+x^2])/(6*x))^4, {x, 0, 20}], x] (* Vaclav Kotesovec, Feb 27 2014 *)
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Fung Lam, Feb 25 2014
STATUS
approved