login
A033132
Base-5 digits are, in order, the first n terms of the periodic sequence with initial period 1,1,0.
0
1, 6, 30, 151, 756, 3780, 18901, 94506, 472530, 2362651, 11813256, 59066280, 295331401, 1476657006, 7383285030, 36916425151, 184582125756, 922910628780, 4614553143901, 23072765719506, 115363828597530, 576819142987651
OFFSET
1,2
FORMULA
a(n) = 5*a(n-1) + a(n-3) - 5*a(n-4).
a(n) = floor( (15/62)*5^n ). - Tani Akinari, Jul 16 2014
G.f.: x*(x+1) / ((x-1)*(5*x-1)*(x^2+x+1)). - Colin Barker, Jul 17 2014
EXAMPLE
The first six terms have base 5 representations 1, 11, 110, 1101, 11011, 110110.
MATHEMATICA
Table[FromDigits[PadRight[{}, n, {1, 1, 0}], 5], {n, 30}] (* Harvey P. Dale, Sep 06 2015 *)
PROG
(PARI) Vec(x*(x+1)/((x-1)*(5*x-1)*(x^2+x+1)) + O(x^100)) \\ Colin Barker, Jul 17 2014
CROSSREFS
Cf. A033137 (similar in base 10).
Sequence in context: A105488 A252699 A054117 * A022023 A066534 A126474
KEYWORD
nonn,base,easy
STATUS
approved