OFFSET
0,3
COMMENTS
Number of moves to separate a Hanoi Tower into two towers of even resp. odd stones. - Martin von Gagern, May 26 2004
From Reinhard Zumkeller, Feb 22 2010: (Start)
for n>0: a(3*n-1) = A083713(n);
a(n+1) - a(n) = abs(A078043(n)). (End)
LINKS
Harvey P. Dale, Table of n, a(n) for n = 0..1000
Mohammad Sajjad Hossain, reArrange.
James Metz, Twists on the Tower of Hanoi, Math. Teacher, Vol. 107, No. 9 (2014), 712-715.
Index entries for linear recurrences with constant coefficients, signature (2,0,1,-2).
FORMULA
From Paul Barry, Jan 23 2004: (Start)
Partial sums of abs(A078043).
G.f.: x*(1+x)/((1-x)*(1-2*x)*(1+x+x^2)) = x*(1+x)/(1-2*x-x^3+2*x^4).
a(n) = (6/7)*2^n - (4/21)*cos(2*Pi*n/3) - (2/21)*sqrt(3)*sin(2*Pi*n/3) - 2/3. (End)
a(n) = a(n-3) + 3 * 2^(n-3). - Martin von Gagern, May 26 2004
a(n+1) = 2*a(n) + 1 - 0^((a(n)+1) mod 4). - Reinhard Zumkeller, Feb 22 2010
a(n) = floor(2^(n+1)*3/7). - Jean-Marie Madiot, Oct 05 2012
a(n) = (1/14)*(-9 - 2*(-1)^floor((2n)/3) + (-1)^(floor((2*n + 7)/3) + 1) + 3*2^(n + 2)). - John M. Campbell, Dec 26 2016
MATHEMATICA
Table[(1/14)*(-9 - 2*(-1)^Floor[(2 n)/3] + (-1)^(1 + Floor[(1/3)*(7 + 2 n)]) + 3*2^(2 + n)), {n, 0, 100}] (* John M. Campbell, Dec 26 2016 *)
Table[FromDigits[PadRight[{}, n, {1, 1, 0}], 2], {n, 0, 40}] (* Harvey P. Dale, Oct 02 2022 *)
PROG
(PARI) A033129(n)=3<<(n+1)\7 \\ M. F. Hasler, Jun 23 2017
(Python) print([(6*2**n//7) for n in range(50)]) # Karl V. Keller, Jr., Jul 11 2022
CROSSREFS
KEYWORD
nonn,base,easy
AUTHOR
STATUS
approved