This site is supported by donations to The OEIS Foundation.

 Annual appeal: Please make a donation to keep the OEIS running! Over 6000 articles have referenced us, often saying "we discovered this result with the help of the OEIS". Other ways to donate

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A033118 Base 8 digits are, in order, the first n terms of the periodic sequence with initial period 1,0. 5
 1, 8, 65, 520, 4161, 33288, 266305, 2130440, 17043521, 136348168, 1090785345, 8726282760, 69810262081, 558482096648, 4467856773185, 35742854185480, 285942833483841, 2287542667870728, 18300341342965825, 146402730743726600 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,2 COMMENTS Partial sums of A015565. - Mircea Merca, Dec 28 2010 LINKS Vincenzo Librandi, Table of n, a(n) for n = 1..1000 Index entries for linear recurrences with constant coefficients, signature (8,1,-8). FORMULA a(n) = 8*a(n-1) + a(n-2) - 8*a(n-3). a(n) = 2^(3*n+3)/63 - 1/14 - (-1)^n/18. - R. J. Mathar, Jan 08 2011 From Paul Barry, Apr 04 2008: (Start) G.f. x/((1-x^2)*(1-8*x)); a(n) = (1/3)*Sum_{k=0..n} A001045(3k). (End) a(n) = floor(8^(n+1)/9)/7 = floor((8*8^n-1)/63) = round((8*8^n-8)/63) = round((16*8^n-9)/63) = ceiling((8*8^n-8)/63). a(n) = a(n-2) + 8^(n-1), n > 2. - Mircea Merca, Dec 28 2010 MAPLE seq(1/7*floor(8^(n+1)/9), n=1..22); # Mircea Merca, Dec 27 2010 PROG (MAGMA) [Round((8*8^n-8)/63): n in [1..30]]; // Vincenzo Librandi, Jun 25 2011 CROSSREFS Pairwise sums are (8^n - 1)/7 (A023001). Sequence in context: A009373 A293802 A288788 * A033126 A022039 A041025 Adjacent sequences:  A033115 A033116 A033117 * A033119 A033120 A033121 KEYWORD nonn,base,easy AUTHOR STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.