login

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

A033115
Base-5 digits are, in order, the first n terms of the periodic sequence with initial period 1,0.
6
1, 5, 26, 130, 651, 3255, 16276, 81380, 406901, 2034505, 10172526, 50862630, 254313151, 1271565755, 6357828776, 31789143880, 158945719401, 794728597005, 3973642985026, 19868214925130, 99341074625651, 496705373128255
OFFSET
1,2
COMMENTS
Partial sums of A015531. - Mircea Merca, Dec 28 2010
FORMULA
a(n) = 5*a(n-1) + a(n-2) - 5*a(n-3). - Joerg Arndt, Jan 08 2011
From Paul Barry, Nov 12 2003: (Start)
a(n) = floor(5^(n+2)/24);
a(n) = Sum_{k=0..floor(n/2)} 5^(n-2*k);
a(n) = Sum_{k=0..n} Sum_{j=0..k} (-1)^(j+k)*5^j.
Partial sums of A083425.
G.f.: 1/((1-x)*(1+x)*(1-5*x));
a(n) = 4*a(n-1) + 5*a(n-2) + 1. (End)
From Mircea Merca, Dec 28 2010: (Start)
a(n) = (1/3)*floor(5^(n+1)/8) = floor((5*5^n - 1)/24) = round((5*5^n - 3)/24) = round((5*5^n - 5)/24) = ceiling((5*5^n - 5)/24);
a(n) = a(n-2) + 5^(n-1), n > 1. (End)
MAPLE
seq(1/3*floor(5^(n+1)/8), n=1..32); # Mircea Merca, Dec 26 2010
MATHEMATICA
Table[FromDigits[PadRight[{}, n, {1, 0}], 5], {n, 30}] (* or *) LinearRecurrence[ {5, 1, -5}, {1, 5, 26}, 30] (* Harvey P. Dale, Jan 28 2017 *)
PROG
(Magma) [Round((5*5^n-3)/24): n in [1..30]]; // Vincenzo Librandi, Jun 25 2011
CROSSREFS
Cf. A015531.
Sequence in context: A379395 A244617 A003583 * A033123 A331883 A047770
KEYWORD
nonn,base,easy
STATUS
approved