This site is supported by donations to The OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A033115 Base-5 digits are, in order, the first n terms of the periodic sequence with initial period 1,0. 6
 1, 5, 26, 130, 651, 3255, 16276, 81380, 406901, 2034505, 10172526, 50862630, 254313151, 1271565755, 6357828776, 31789143880, 158945719401, 794728597005, 3973642985026, 19868214925130, 99341074625651, 496705373128255 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,2 COMMENTS Partial sums of A015531. - Mircea Merca, Dec 28 2010 LINKS Vincenzo Librandi, Table of n, a(n) for n = 1..1000 Index entries for linear recurrences with constant coefficients, signature (5,1,-5). FORMULA a(n) = 5*a(n-1) + a(n-2) - 5*a(n-3). - Joerg Arndt, Jan 08 2011 From Paul Barry, Nov 12 2003: (Start) a(n) = floor(5^(n+2)/24); a(n) = Sum_{k=0..floor(n/2)} 5^(n-2*k); a(n) = Sum_{k=0..n} Sum_{j=0..k} (-1)^(j+k)*5^j. Partial sums of A083425. G.f.: 1/((1-x)*(1+x)*(1-5*x)); a(n) = 4*a(n-1) + 5*a(n-2) + 1. (End) From Mircea Merca, Dec 28 2010: (Start) a(n) = (1/3)*floor(5^(n+1)/8) = floor((5*5^n - 1)/24) = round((5*5^n - 3)/24) = round((5*5^n - 5)/24) = ceiling((5*5^n - 5)/24); a(n) = a(n-2) + 5^(n-1), n > 1. (End) MAPLE seq(1/3*floor(5^(n+1)/8), n=1..32); # Mircea Merca, Dec 26 2010 MATHEMATICA Table[FromDigits[PadRight[{}, n, {1, 0}], 5], {n, 30}] (* or *) LinearRecurrence[ {5, 1, -5}, {1, 5, 26}, 30] (* Harvey P. Dale, Jan 28 2017 *) PROG (MAGMA) [Round((5*5^n-3)/24): n in [1..30]]; // Vincenzo Librandi, Jun 25 2011 CROSSREFS Cf. A015531. Sequence in context: A247491 A244617 A003583 * A033123 A047770 A047757 Adjacent sequences:  A033112 A033113 A033114 * A033116 A033117 A033118 KEYWORD nonn,base,easy AUTHOR STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified October 19 04:40 EDT 2019. Contains 328211 sequences. (Running on oeis4.)