OFFSET
1,1
COMMENTS
The terms a({5, 9, 11, 12}) = {364509, 676657, 731378, 831122} are such that 6*a(n)^6 == 66666646, 66666694, or 66666624 (mod 10^8). Therefore, any number congruent to one of these (mod 5*10^7) is also in the sequence. Of course, for any term a(n), all numbers a(n)*10^k, k >= 0, are also in the sequence. - M. F. Hasler, Jul 16 2024
Conjecture: a(n) ~ n. - Charles R Greathouse IV, Dec 04 2024
REFERENCES
C. A. Pickover, "Keys to Infinity", New York: Wiley, p. 7, 1995.
LINKS
Giovanni Resta, super-d numbers, personal web site "Numbers Aplenty", 2013
Eric Weisstein's World of Mathematics, Super-d Number.
MATHEMATICA
With[{c=6}, Select[Range[165*10^4], SequenceCount[IntegerDigits[c #^c], PadRight[ {}, c, c]]>0&]] (* Harvey P. Dale, Jan 18 2023 *)
PROG
for(n=1, oo, is_A032746(n)&& print1(n", ")) \\ Quite slow... - M. F. Hasler, Jul 16 2024
CROSSREFS
KEYWORD
nonn,base
AUTHOR
Patrick De Geest, May 15 1998
EXTENSIONS
Offset changed to 1 by M. F. Hasler, Jul 16 2024
STATUS
approved