login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A032746
Super-6 Numbers (6 * n^6 contains substring '666666' in its decimal expansion).
2
27257, 272570, 302693, 323576, 364509, 502785, 513675, 537771, 676657, 678146, 731378, 831122, 836553, 913797, 920456, 921269, 1045361, 1144983, 1169054, 1283069, 1288697, 1292673, 1343642, 1346117, 1472078, 1523993, 1640026
OFFSET
1,1
COMMENTS
The terms a({5, 9, 11, 12}) = {364509, 676657, 731378, 831122} are such that 6*a(n)^6 == 66666646, 66666694, or 66666624 (mod 10^8). Therefore, any number congruent to one of these (mod 5*10^7) is also in the sequence. Of course, for any term a(n), all numbers a(n)*10^k, k >= 0, are also in the sequence. - M. F. Hasler, Jul 16 2024
Conjecture: a(n) ~ n. - Charles R Greathouse IV, Dec 04 2024
REFERENCES
C. A. Pickover, "Keys to Infinity", New York: Wiley, p. 7, 1995.
LINKS
Giovanni Resta, super-d numbers, personal web site "Numbers Aplenty", 2013
Eric Weisstein's World of Mathematics, Super-d Number.
MATHEMATICA
With[{c=6}, Select[Range[165*10^4], SequenceCount[IntegerDigits[c #^c], PadRight[ {}, c, c]]>0&]] (* Harvey P. Dale, Jan 18 2023 *)
PROG
(PARI) select( {is_A032746(n)=is_A014569(n, 6)}, [1..10^5])
for(n=1, oo, is_A032746(n)&& print1(n", ")) \\ Quite slow... - M. F. Hasler, Jul 16 2024
CROSSREFS
Cf. A014569 (d=3), A032743 - A032749 (d=2, ..., 9).
Sequence in context: A250852 A157820 A251777 * A099230 A267706 A237381
KEYWORD
nonn,base
AUTHOR
Patrick De Geest, May 15 1998
EXTENSIONS
Offset changed to 1 by M. F. Hasler, Jul 16 2024
STATUS
approved