login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A029875 Related to a bound for Giuga's conjecture. 0
9, 27, 65, 114, 127, 202, 278, 323, 554, 554, 554, 704, 704, 704, 704, 704, 751, 751, 825, 825 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,1

COMMENTS

In the original 1950 Giuga's article (see reference), the sequence is written as 8, 26, 65, 113, 126, 201. He also stated that the 9th term had to be greater than 360. In 1985, E. Bedocchi computed it as 554. - Paolo P. Lava, Jul 27 2012

REFERENCES

E. Bedocchi, "Nota ad una congettura sui numeri primi", Rivista Matematica Università Parma, 11:229-236, 1985.

G. Giuga, "Su una presumibile proprietà caratteristica dei numeri primi", Istituto Lombardo Scienze e Lettere, Rendiconti A, 83, 511-528 (1950).

LINKS

Table of n, a(n) for n=0..19.

Borwein, D., Borwein, J. M., Borwein, P. B. and Girgensohn, R., Giuga's Conjecture on Primality, Amer. Math. Monthly 103, No. 1, 40-50 (1996).

Borwein, J. M. and Wong, E., A Survey of Results Relating to Giuga's Conjecture on Primality. Vinet, Luc (ed.): Advances in Mathematical Sciences: CRM's 25 Years. Providence, RI: American Mathematical Society. CRM Proc. Lect. Notes. 11, 13-27 (1997). (alternate link)

R. Mestrovic, On a Congruence Modulo n^3 Involving Two Consecutive Sums of Powers, Journal of Integer Sequences, Vol. 17 (2014), 14.8.4.

CROSSREFS

Cf. A007850.

Sequence in context: A153237 A256327 A011923 * A129957 A198956 A110205

Adjacent sequences:  A029872 A029873 A029874 * A029876 A029877 A029878

KEYWORD

nonn,more

AUTHOR

N. J. A. Sloane

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy .

Last modified March 26 20:41 EDT 2017. Contains 284137 sequences.