login
A029875
Related to a bound for Giuga's conjecture.
0
9, 27, 65, 114, 127, 202, 278, 323, 554, 554, 554, 704, 704, 704, 704, 704, 751, 751, 825, 825
OFFSET
0,1
COMMENTS
In the original 1950 Giuga's article (see reference), the sequence is written as 8, 26, 65, 113, 126, 201. He also stated that the 9th term had to be greater than 360. In 1985, E. Bedocchi computed it as 554. - Paolo P. Lava, Jul 27 2012
REFERENCES
G. Giuga, "Su una presumibile proprietà caratteristica dei numeri primi", Istituto Lombardo Scienze e Lettere, Rendiconti A, 83, 511-528 (1950).
LINKS
E. Bedocchi, Nota ad una congettura sui numeri primi, Rivista Matematica Università Parma, 11:229-236, 1985.
D. Borwein, J. M. Borwein, P. B. Borwein, and R. Girgensohn, Giuga's Conjecture on Primality, Amer. Math. Monthly 103, No. 1, 40-50 (1996).
J. M. Borwein and E. Wong, A Survey of Results Relating to Giuga's Conjecture on Primality. Vinet, Luc (ed.): Advances in Mathematical Sciences: CRM's 25 Years. Providence, RI: American Mathematical Society. CRM Proc. Lect. Notes. 11, 13-27 (1997). (alternate link)
R. Mestrovic, On a Congruence Modulo n^3 Involving Two Consecutive Sums of Powers, Journal of Integer Sequences, Vol. 17 (2014), 14.8.4.
CROSSREFS
Cf. A007850.
Sequence in context: A153237 A256327 A011923 * A335671 A337628 A129957
KEYWORD
nonn,more
STATUS
approved