login
A029280
Expansion of 1/((1-x^3)(1-x^5)(1-x^7)(1-x^11)).
1
1, 0, 0, 1, 0, 1, 1, 1, 1, 1, 2, 2, 2, 2, 3, 3, 3, 4, 4, 4, 5, 6, 6, 6, 7, 8, 8, 9, 10, 10, 11, 12, 13, 14, 14, 16, 17, 17, 19, 20, 21, 22, 24, 25, 26, 28, 29, 31, 32, 34, 36, 37, 39, 41, 43, 45, 47, 49, 51, 53, 56, 58, 60, 63
OFFSET
0,11
COMMENTS
Number of partitions of n into parts 3, 5, 7, and 11. - Vincenzo Librandi, Jun 04 2014
LINKS
M. Janjic, On Linear Recurrence Equations Arising from Compositions of Positive Integers, Journal of Integer Sequences, Vol. 18 (2015), Article 15.4.7.
Index entries for linear recurrences with constant coefficients, signature (0,0,1,0,1,0,1,-1,0,-1,1,-1,0,-1,1,-1,0,-1,1,0,1,0,1,0,0,-1).
MATHEMATICA
CoefficientList[Series[1/((1 - x^3) (1 - x^5) (1 - x^7) (1 - x^11)), {x, 0, 100}], x] (* Vincenzo Librandi, Jun 04 2014 *)
CROSSREFS
Sequence in context: A086916 A008680 A120203 * A060971 A283422 A364185
KEYWORD
nonn,easy
STATUS
approved