login
A029195
Expansion of 1/((1-x^2)(1-x^5)(1-x^6)(1-x^9)).
1
1, 0, 1, 0, 1, 1, 2, 1, 2, 2, 3, 3, 4, 3, 5, 5, 6, 6, 8, 7, 10, 9, 11, 11, 14, 13, 16, 16, 18, 19, 22, 21, 25, 25, 28, 29, 33, 32, 37, 37, 41, 42, 47, 46, 52, 53, 57, 59, 64, 64, 71, 72, 77, 79, 86, 86, 94, 95, 101, 104, 112
OFFSET
0,7
LINKS
Index entries for linear recurrences with constant coefficients, signature (0,1,0,0,1,1,-1,-1,1,0,-2,0,1,-1,-1,1,1,0,0,1,0,-1).
FORMULA
G.f.: 1/((1-x^2)*(1-x^5)*(1-x^6)*(1-x^9)).
a(n) = a(n-2)+a(n-5)+a(n-6)-a(n-7)-a(n-8)+a(n-9)-2*a(n-11)+a(n-13)-a(n-14)-a(n-15)+a(n-16)+a(n-17)+a(n-20)-a(n-22). - Wesley Ivan Hurt, May 09 2022
MATHEMATICA
CoefficientList[Series[1/((1 - x^2) (1 - x^5) (1 - x^6)(1 - x^9)), {x, 0, 100}], x] (* Vincenzo Librandi, Jun 02 2014 *)
PROG
(PARI) Vec(1/((1-x^2)*(1-x^5)*(1-x^6)*(1-x^9)) + O(x^80)) \\ Jinyuan Wang, Mar 15 2020
CROSSREFS
Sequence in context: A349041 A285870 A224931 * A242745 A285578 A029168
KEYWORD
nonn,easy
STATUS
approved