login
A029196
Expansion of 1/((1-x^2)(1-x^5)(1-x^6)(1-x^10)).
1
1, 0, 1, 0, 1, 1, 2, 1, 2, 1, 4, 2, 5, 2, 5, 4, 7, 5, 8, 5, 11, 7, 13, 8, 14, 11, 17, 13, 19, 14, 24, 17, 27, 19, 29, 24, 34, 27, 37, 29, 44, 34, 49, 37, 52, 44, 59, 49, 64, 52, 73, 59, 80, 64, 85, 73, 94, 80, 101, 85, 113, 94
OFFSET
0,7
LINKS
Index entries for linear recurrences with constant coefficients, signature (0, 1, 0, 0, 1, 1, -1, -1, 0, 1, -1, -1, 1, 0, -1, -1, 1, 1, 0, 0, 1, 0, -1).
FORMULA
G.f.: 1/((1-x^2)*(1-x^5)*(1-x^6)*(1-x^10)).
a(0)=1, a(1)=0, a(2)=1, a(3)=0, a(4)=1, a(5)=1, a(6)=2, a(7)=1, a(8)=2, a(9)=1, a(10)=4, a(11)=2, a(12)=5, a(13)=2, a(14)=5, a(15)=4, a(16)=7, a(17)=5, a(18)=8, a(19)=5, a(20)=11, a(21)=7, a(22)=13, a(n)=a(n-2)+ a(n-5)+ a(n-6)-a(n-7)-a(n-8)+a(n-10)-a(n-11)-a(n-12)+a(n-13)-a(n-15)- a(n-16)+ a(n-17)+a(n-18)+a(n-21)-a(n-23). - Harvey P. Dale, Jan 25 2013
MATHEMATICA
CoefficientList[Series[1/((1-x^2)(1-x^5)(1-x^6)(1-x^10)), {x, 0, 80}], x] (* or *) LinearRecurrence[ {0, 1, 0, 0, 1, 1, -1, -1, 0, 1, -1, -1, 1, 0, -1, -1, 1, 1, 0, 0, 1, 0, -1}, {1, 0, 1, 0, 1, 1, 2, 1, 2, 1, 4, 2, 5, 2, 5, 4, 7, 5, 8, 5, 11, 7, 13}, 80] (* Harvey P. Dale, Jan 25 2013 *)
CROSSREFS
Sequence in context: A161270 A160974 A187718 * A051493 A338201 A029173
KEYWORD
nonn
AUTHOR
STATUS
approved