login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A028567
Numbers k such that k*(k+8) is a palindrome.
2
0, 1, 3, 66, 88, 91, 173, 216, 225, 284, 294, 696, 707, 924, 2235, 2828, 6996, 9394, 28314, 30031, 57489, 69996, 93844, 188583, 228175, 241097, 283778, 298144, 597883, 699996, 896478, 1934063, 2281817, 6999996, 7243225, 17646619, 17869169, 19782199, 23352327
OFFSET
1,3
COMMENTS
For i >= 0, 69^i6 is a term with corresponding palindrome 48(99)^{2*i}84, where ^ is repeated concatenation. - Michael S. Branicky, Jan 24 2022
LINKS
Michael S. Branicky, Table of n, a(n) for n = 1..58
Erich Friedman, What's Special About This Number? (See entries 696, 2235, 2828, 6996, 9394.)
MATHEMATICA
Select[Range[0, 8*10^6], PalindromeQ[#(#+8)]&] (* Requires Mathematica version 10 or later *) (* Harvey P. Dale, May 28 2017 *)
PROG
(Python)
from itertools import count, islice
def ispal(n): s = str(n); return s == s[::-1]
def agen():
for k in count(0):
if ispal(k*(k+8)):
yield k
print(list(islice(agen(), 35))) # Michael S. Branicky, Jan 24 2022
CROSSREFS
Sequence in context: A306410 A091470 A374226 * A003359 A292064 A256151
KEYWORD
nonn,base
EXTENSIONS
a(36) and beyond from Michael S. Branicky, Jan 24 2022
STATUS
approved