|
|
A028569
|
|
a(n) = n*(n + 9).
|
|
21
|
|
|
0, 10, 22, 36, 52, 70, 90, 112, 136, 162, 190, 220, 252, 286, 322, 360, 400, 442, 486, 532, 580, 630, 682, 736, 792, 850, 910, 972, 1036, 1102, 1170, 1240, 1312, 1386, 1462, 1540, 1620, 1702, 1786, 1872, 1960, 2050, 2142, 2236, 2332, 2430
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
0,2
|
|
COMMENTS
|
a(n) is the first Zagreb index of the wheel graph with n + 1 vertices. The first Zagreb index of a simple connected graph is the sum of the squared degrees of its vertices. Alternately, it is the sum of the degree sums d(i) + d(j) over all edges ij of the graph. - Emeric Deutsch, Nov 07 2016
The sequence provides all nonnegative k such that 4*k + 81 is a square. - Bruno Berselli, May 08 2018
|
|
LINKS
|
Shawn A. Broyles, Table of n, a(n) for n = 0..1000
Patrick De Geest, Palindromic Quasipronics of the form n(n+x).
Felix Pozon Muga II, Extending the Golden Ratio and the Binet-de Moivre Formula, Preprint on ResearchGate, March 2014.
Index entries for linear recurrences with constant coefficients, signature (3,-3,1).
|
|
FORMULA
|
Equals 2 * A056000. - Zerinvary Lajos, Feb 12 2007
a(n) = 2*n + a(n - 1) + 8. - Vincenzo Librandi, Aug 05 2010
Sum_{n >= 1} 1/a(n) = 7129/22680 = 0.314329806... - R. J. Mathar, Mar 22 2011
G.f.: 2*x*(5 - 4*x)/(1 - x)^3. - Colin Barker, Jan 10 2012
a(n) = 3*a(n - 1) - 3*a(n - 2) + a(n - 3). - Wesley Ivan Hurt, Sep 26 2014
Sum_{n>=1} (-1)^(n+1)/a(n) = 2*log(2)/9 - 1879/22680. - Amiram Eldar, Jan 15 2021
|
|
MAPLE
|
A028569:=n->n*(n+9): seq(A028569(n), n=0..50); # Wesley Ivan Hurt, Sep 26 2014
|
|
MATHEMATICA
|
Table[n (n + 9), {n, 0, 50}] (* Wesley Ivan Hurt, Sep 26 2014 *)
|
|
PROG
|
(MAGMA) [n*(n+9) : n in [0..50]]; // Wesley Ivan Hurt, Sep 26 2014
(PARI) a(n)=n*(n+9) \\ Charles R Greathouse IV, Sep 24 2015
(Scala) (0 to 49).map(n => n * (n + 9)) // Alonso del Arte, Apr 22 2020
|
|
CROSSREFS
|
Cf. A056000.
Sequence in context: A276626 A211482 A177791 * A014367 A063710 A157917
Adjacent sequences: A028566 A028567 A028568 * A028570 A028571 A028572
|
|
KEYWORD
|
nonn,easy
|
|
AUTHOR
|
Patrick De Geest
|
|
STATUS
|
approved
|
|
|
|