login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A028507 Continued fraction expansion for log_2(3). 4
1, 1, 1, 2, 2, 3, 1, 5, 2, 23, 2, 2, 1, 1, 55, 1, 4, 3, 1, 1, 15, 1, 9, 2, 5, 7, 1, 1, 4, 8, 1, 11, 1, 20, 2, 1, 10, 1, 4, 1, 1, 1, 1, 1, 37, 4, 55, 1, 1, 49, 1, 1, 1, 4, 1, 3, 2, 3, 3, 1, 5, 16, 2, 3, 1, 1, 1, 1, 1, 5, 2, 1, 2, 8, 7, 1, 1, 2, 1, 1, 3, 3, 1, 1, 1, 1, 5, 4, 2, 2, 2, 16, 8, 10, 1, 25, 2, 1 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,4

LINKS

T. D. Noe, Table of n, a(n) for n=1..10000

E. G. Dunne, Pianos and Continued Fractions

Terence Jackson and Keith Matthews, "On Shanks' Algorithm for Computing the Continued Fraction of log_b a" , Journal of Integer Sequences, Vol. 5 (2002), Article 02.2.7

T. H. Jackson & K. R. Matthews, The 1000 partial quotients of log_2(3)

Dave Rusin, Why 12 tones per octave? [Broken link]

Dave Rusin, Why 12 tones per octave? [Cached copy]

EXAMPLE

log_2 3 = 1.5849625007211561814537389439...

MAPLE

Digits := 200: convert(evalf( log(3)/log(2) ), confrac);

MATHEMATICA

ContinuedFraction[Log[2, 3], 120] (* Harvey P. Dale, Oct 24 2011 *)

CROSSREFS

Cf. A005663, A005664, A020857.

Sequence in context: A204995 A325099 A088177 * A096226 A155980 A309531

Adjacent sequences:  A028504 A028505 A028506 * A028508 A028509 A028510

KEYWORD

nonn,cofr,nice,easy

AUTHOR

Tony Smith (tsmith(AT)innerx.net)

EXTENSIONS

More terms from James A. Sellers, Sep 16 2000

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified November 19 22:34 EST 2019. Contains 329323 sequences. (Running on oeis4.)