%I #32 Aug 07 2024 22:39:51
%S 1,1,1,2,2,3,1,5,2,23,2,2,1,1,55,1,4,3,1,1,15,1,9,2,5,7,1,1,4,8,1,11,
%T 1,20,2,1,10,1,4,1,1,1,1,1,37,4,55,1,1,49,1,1,1,4,1,3,2,3,3,1,5,16,2,
%U 3,1,1,1,1,1,5,2,1,2,8,7,1,1,2,1,1,3,3,1,1,1,1,5,4,2,2,2,16,8,10,1,25,2,1
%N Continued fraction expansion for log_2(3).
%H T. D. Noe, <a href="/A028507/b028507.txt">Table of n, a(n) for n = 0..9999</a>
%H E. G. Dunne, <a href="/DUNNE/TEMPERAMENT2.html">Pianos and Continued Fractions</a>
%H Terence Jackson and Keith Matthews, <a href="https://cs.uwaterloo.ca/journals/JIS/VOL5/Jackson/matthews3.html">"On Shanks' Algorithm for Computing the Continued Fraction of log_b a" </a>, Journal of Integer Sequences, Vol. 5 (2002), Article 02.2.7
%H T. H. Jackson & K. R. Matthews, <a href="http://www.numbertheory.org/pdfs/1000.pdf">The 1000 partial quotients of log_2(3)</a>
%H Dave Rusin, <a href="http://www.math.niu.edu/~rusin/papers/uses-math/music/12">Why 12 tones per octave?</a> [Broken link]
%H Dave Rusin, <a href="/A028507/a028507.txt">Why 12 tones per octave?</a> [Cached copy]
%e log_2(3) = 1.5849625007211561814537389439...
%p Digits := 200: convert(evalf( log(3)/log(2) ),confrac);
%t ContinuedFraction[Log[2,3],120] (* _Harvey P. Dale_, Oct 24 2011 *)
%Y Cf. A005663, A005664, A020857 (decimal expansion).
%K nonn,cofr,nice,easy
%O 0,4
%A Tony Smith (tsmith(AT)innerx.net)
%E More terms from _James A. Sellers_, Sep 16 2000
%E Offset changed by _Andrew Howroyd_, Aug 07 2024