This site is supported by donations to The OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A027855 Antimutinous numbers: n>1 such that n/p^k < p, where p is the largest prime dividing n and p^k is the highest power of p dividing n. 4
 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 25, 26, 27, 28, 29, 31, 32, 33, 34, 35, 37, 38, 39, 41, 42, 43, 44, 46, 47, 49, 50, 51, 52, 53, 54, 55, 57, 58, 59, 61, 62, 64, 65, 66, 67, 68, 69, 71, 73, 74, 75, 76, 77, 78, 79, 81, 82, 83, 85, 86, 87 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,1 LINKS Ivan Neretin, Table of n, a(n) for n = 1..10000 MAPLE A006530 := proc(n) local ifs ; if n = 1 then 1; else ifs := ifactors(n)[2] ; max(seq( op(1, k), k=ifs)) ; fi ; end: isA027855 := proc(n) local p, k, pk; if n <= 1 then false; else p := A006530(n) ; pk := p ; while n mod ( pk*p) = 0 do pk := pk*p ; od: if n< p*pk then true ; else false ; fi ; fi ; end: for n from 2 to 120 do if isA027855(n) then printf("%d, ", n) ; fi ; od: # R. J. Mathar, Dec 02 2007 MATHEMATICA Select[Range@100, #1^(#2 + 1) & @@ FactorInteger[#][[-1]] > # &] (* Ivan Neretin, Jul 09 2015 *) PROG (Python) from sympy import factorint, primefactors def a053585(n):     if n==1: return 1     p = primefactors(n)[-1]     return p**factorint(n)[p] print [n for n in xrange(2, 301) if n/a053585(n)

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified March 25 10:16 EDT 2019. Contains 321470 sequences. (Running on oeis4.)