This site is supported by donations to The OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A027651 Poly-Bernoulli numbers B_n^(k) with k=-4. 3
 1, 16, 146, 1066, 6902, 41506, 237686, 1315666, 7107302, 37712866, 197451926, 1023358066, 5262831302, 26903268226, 136887643766, 693968021266, 3508093140902, 17693879415586, 89084256837206, 447884338361266, 2249284754708102, 11285908565322946, 56587579617416246 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,2 COMMENTS Row 4 of array A099594. LINKS Vincenzo Librandi, Table of n, a(n) for n = 0..500 K. Imatomi, M. Kaneko, E. Takeda, Multi-Poly-Bernoulli Numbers and Finite Multiple Zeta Values, J. Int. Seq. 17 (2014) # 14.4.5 K. Kamano, Sums of Products of Bernoulli Numbers, Including Poly-Bernoulli Numbers, J. Int. Seq. 13 (2010), 10.5.2 Ken Kamano, Sums of Products of Poly-Bernoulli Numbers of Negative Index, Journal of Integer Sequences, Vol. 15 (2012), #12.1.3. Masanobu Kaneko, Poly-Bernoulli numbers, Journal de thÃ©orie des nombres de Bordeaux, 9 no. 1 (1997), Pages 221-228. Hiroyuki Komaki, Relations between Multi-Poly-Bernoulli numbers and Poly-Bernoulli numbers of negative index, arXiv:1503.04933 [math.NT], 2015. Index entries for linear recurrences with constant coefficients, signature (14,-71,154,-120). FORMULA a(n) = 24*5^n -36*4^n +14*3^n -2^n. - Vladeta Jovovic, Nov 14 2003 G.f.: (1+4*x)*(1-x)^2/((1-2*x)*(1-3*x)*(1-4*x)*(1-5*x)). E.g.f.: 24*exp(5*x) - 36*exp(4*x) + 14*exp(3*x) - exp(2*x). - G. C. Greubel, Feb 07 2018 MAPLE (-1)^n*sum( (-1)^'m'*'m'!*stirling2(n, 'm')/('m'+1)^k, 'm'=0..n); MATHEMATICA Table[24*5^n -36*4^n +14*3^n -2^n, {n, 0, 30}] (* G. C. Greubel, Feb 07 2018 *) PROG (MAGMA) [24*5^n-36*4^n+14*3^n-2^n: n in [0..30]]; // Vincenzo Librandi, Jul 17 2011 (PARI) Vec((1+4*x)*((1-x)^2)/((1-2*x)*(1-3*x)*(1-4*x)*(1-5*x)) + O(x^30)) \\ Michel Marcus, Feb 13 2015 CROSSREFS Cf. A027649, A027650. Sequence in context: A076029 A196572 A052388 * A125379 A232063 A126537 Adjacent sequences:  A027648 A027649 A027650 * A027652 A027653 A027654 KEYWORD nonn,easy AUTHOR STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified March 20 14:04 EDT 2018. Contains 300985 sequences. (Running on oeis4.)