login
This site is supported by donations to The OEIS Foundation.

 

Logo

Annual Appeal: Please make a donation (tax deductible in USA) to keep the OEIS running. Over 5000 articles have referenced us, often saying "we discovered this result with the help of the OEIS".

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A027651 Poly-Bernoulli numbers B_n^(k) with k=-4. 3
1, 16, 146, 1066, 6902, 41506, 237686, 1315666, 7107302, 37712866, 197451926, 1023358066, 5262831302, 26903268226, 136887643766, 693968021266, 3508093140902, 17693879415586, 89084256837206 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,2

LINKS

Vincenzo Librandi, Table of n, a(n) for n = 0..500

Ken Kamano, Sums of Products of Poly-Bernoulli Numbers of Negative Index, Journal of Integer Sequences, Vol. 15 (2012), #12.1.3.

Masanobu Kaneko, Poly-Bernoulli numbers, Journal de théorie des nombres de Bordeaux, 9 no. 1 (1997), Pages 221-228.

Hiroyuki Komaki, Relations between Multi-Poly-Bernoulli numbers and Poly-Bernoulli numbers of negative index, arXiv:1503.04933 [math.NT], 2015.

Index entries for sequences related to Bernoulli numbers.

FORMULA

a(n) = 24*5^n-36*4^n+14*3^n-2^n. - Vladeta Jovovic, Nov 14 2003

G.f.: (1+4*x)*((1-x)^2)/((1-2*x)*(1-3*x)*(1-4*x)*(1-5*x)).

MAPLE

(-1)^n*sum( (-1)^'m'*'m'!*stirling2(n, 'm')/('m'+1)^k, 'm'=0..n);

PROG

(MAGMA) [24*5^n-36*4^n+14*3^n-2^n: n in [0..30]]; // Vincenzo Librandi, Jul 17 2011

(PARI) Vec((1+4*x)*((1-x)^2)/((1-2*x)*(1-3*x)*(1-4*x)*(1-5*x)) + O(x^30)) \\ Michel Marcus, Feb 13 2015

CROSSREFS

Cf. A027649, A027650.

Row 4 of array A099594.

Sequence in context: A076029 A196572 A052388 * A125379 A232063 A126537

Adjacent sequences:  A027648 A027649 A027650 * A027652 A027653 A027654

KEYWORD

nonn,easy

AUTHOR

N. J. A. Sloane.

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy .

Last modified December 5 15:57 EST 2016. Contains 278770 sequences.