login
a(n) = T(n, floor(n/2)), T given by A026769.
11

%I #7 Nov 01 2019 22:23:13

%S 1,1,2,4,7,17,28,76,120,352,538,1674,2493,8129,11854,40156,57558,

%T 201236,284392,1020922,1426038,5234660,7241356,27089726,37173304,

%U 141335846,192638992,742712598,1006564439,3927908193,5297715628

%N a(n) = T(n, floor(n/2)), T given by A026769.

%H G. C. Greubel, <a href="/A026775/b026775.txt">Table of n, a(n) for n = 0..1000</a>

%p T:= proc(n,k) option remember;

%p if n<0 then 0;

%p elif k=0 or k=n then 1;

%p elif n=2 and k=1 then 2;

%p elif k <= (n-1)/2 then

%p procname(n-1,k-1)+procname(n-2,k-1)+procname(n-1,k) ;

%p else

%p procname(n-1,k-1)+procname(n-1,k) ;

%p end if ;

%p end proc;

%p seq(T(n, floor(n/2)), n=0..30); # _G. C. Greubel_, Nov 01 2019

%t T[n_, k_]:= T[n, k]= If[n<0, 0, If[k==0 || k==n, 1, If[n==2 && k==1, 2, If[k<=(n-1)/2, T[n-1, k-1] + T[n-2, k-1] + T[n-1, k], T[n-1, k-1] + T[n-1, k] ]]]]; Table[T[n, Floor[n/2]], {n,0,30}] (* _G. C. Greubel_, Nov 01 2019 *)

%o (Sage)

%o @CachedFunction

%o def T(n, k):

%o if (k==0 or k==n): return 1

%o elif (n==2 and k==1): return 2

%o elif (k<=(n-1)/2): return T(n-1,k-1) + T(n-2,k-1) + T(n-1,k)

%o else: return T(n-1,k-1) + T(n-1,k)

%o [T(n, floor(n/2)) for n in (0..30)] # _G. C. Greubel_, Nov 01 2019

%Y Cf. A026769, A026770, A026771, A026772, A026773, A026774, A026776, A026777, A026778, A026779.

%K nonn

%O 0,3

%A _Clark Kimberling_