login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A026769 Triangular array T read by rows: T(n,0)=T(n,n)=1 for n >= 0; T(2,1)=2; for n >= 3 and 1<=k<=n-1, T(n,k)=T(n-1,k-1)+T(n-2,k-1)+T(n-1,k) if 1<=k<=(n-1)/2, else T(n,k)=T(n-1,k-1)+T(n-1,k). 30
1, 1, 1, 1, 2, 1, 1, 4, 3, 1, 1, 6, 7, 4, 1, 1, 8, 17, 11, 5, 1, 1, 10, 31, 28, 16, 6, 1, 1, 12, 49, 76, 44, 22, 7, 1, 1, 14, 71, 156, 120, 66, 29, 8, 1, 1, 16, 97, 276, 352, 186, 95, 37, 9, 1, 1, 18, 127, 444, 784, 538, 281, 132, 46, 10, 1, 1, 20 (list; table; graph; refs; listen; history; text; internal format)
OFFSET

0,5

COMMENTS

T(n, k) is the number of paths from (0, 0) to (k,n-k) in the directed graph having vertices (i, j (i and j in range [0,n]) and edges (i,j)-to-(i+1,j) and (i,j)-to-(i,j+1) for i,j>=0 and edges (i,i+h)-to-(i+1,i+h+1) for i>=0, h>=1.

Also, square array R read by antidiagonals where R(i,j) = T(i+j,i), which is equal to the number of paths from (0,0) to (i,j) in the above graph. - Max Alekseyev, Dec 02 2015

LINKS

Table of n, a(n) for n=0..67.

M. A. Alekseyev. On Enumeration of Dyck-Schroeder Paths. Journal of Combinatorial Mathematics and Combinatorial Computing 106 (2018), 59-68. arXiv:1601.06158

FORMULA

For n>=2*k, T(n,k) = coefficient of x^k in G(x)*S(x)^(n-2*k). For n<=2*k, T(n,k) = coefficient of x^(n-k) in G(x)*C(x)^(2*k-n). Here C(x)=(1-sqrt(1-4x))/(2*x) is o.g.f. for A000108, S(x)=(1-x-sqrt(1-6*x+x^2))/(2*x) is o.g.f. for A006318, and G(x)=1/(1-x*(C(x)+S(x))) is o.g.f. for A026770. - Max Alekseyev, Dec 02 2015

EXAMPLE

1;

1,1;

1,2,1;

1,4,3,1;

1,6,7,4,1;

1,8,17,11,5,1;

1,10,31,28,16,6,1;

1,12,49,76,44,22,7,1;

1,14,71,156,120,66,29,8,1;

1,16,97,276,352,186,95,37,9,1;

1,18,127,444,784,538,281,132,46,10,1;

MAPLE

A026769 := proc(n, k)

    option remember;

    if k= 0 or k =n then

        1;

    elif n= 2 and k= 1 then

        2;

    elif k <= (n-1)/2 then

        procname(n-1, k-1)+procname(n-2, k-1)+procname(n-1, k) ;

    else

        procname(n-1, k-1)+procname(n-1, k) ;

    fi ;

end proc: # R. J. Mathar, Jun 15 2014

MATHEMATICA

T[n_, k_] := T[n, k] = Which[k==0 || k==n, 1, n==2 && k==1, 2, k <= (n-1)/2, T[n-1, k-1] + T[n-2, k-1] + T[n-1, k], True, T[n-1, k-1] + T[n-1, k]];

Table[T[n, k], {n, 0, 11}, {k, 0, n}] // Flatten (* Jean-François Alcover, Dec 10 2017, from Maple *)

CROSSREFS

Cf. A026770, A026771, A026772, A026773, A026774, A026775, A026776, A026777, A026779

Cf. A026780 (a variant with h>=0)

Sequence in context: A026758 A130523 A034363 * A257365 A230858 A060098

Adjacent sequences:  A026766 A026767 A026768 * A026770 A026771 A026772

KEYWORD

nonn,tabl

AUTHOR

Clark Kimberling

EXTENSIONS

Offset corrected. - R. J. Mathar, Jun 15 2014

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified March 21 09:59 EDT 2019. Contains 321368 sequences. (Running on oeis4.)