login
A026526
a(n) = T(2n,n-1), T given by A026519.
21
1, 2, 9, 32, 130, 516, 2107, 8632, 35703, 148390, 619850, 2598960, 10933507, 46124274, 195055005, 826617216, 3509650697, 14926011714, 63572290247, 271125967840, 1157705297385, 4948808238110, 21175676836110, 90692557152240, 388751132082600, 1667665994149376, 7159105163384127, 30753762496639504
OFFSET
1,2
LINKS
FORMULA
a(n) = A026519(2*n, n-1).
a(n) = A026536(2*n, n-1).
MATHEMATICA
T[n_, k_]:= T[n, k]= If[k<0 || k>2*n, 0, If[k==0 || k==2*n, 1, If[k==1 || k==2*n-1, Floor[(n+1)/2], If[EvenQ[n], T[n-1, k-2] + T[n-1, k], T[n-1, k-1] + T[n-1, k-2] + T[n-1, k] ]]]]; (* T = A026519 *)
a[n_] := a[n] = Block[{$RecursionLimit = Infinity}, T[2*n, n-1] ];
Table[a[n], {n, 40}] (* G. C. Greubel, Dec 20 2021 *)
PROG
(Sage)
@CachedFunction
def T(n, k): # T = A026519
if (k<0 or k>2*n): return 0
elif (k==0 or k==2*n): return 1
elif (k==1 or k==2*n-1): return (n+1)//2
elif (n%2==0): return T(n-1, k) + T(n-1, k-2)
else: return T(n-1, k) + T(n-1, k-1) + T(n-1, k-2)
[T(2*n, n-1) for n in (1..40)] # G. C. Greubel, Dec 20 2021
KEYWORD
nonn
EXTENSIONS
Terms a(20) onward added by G. C. Greubel, Dec 20 2021
STATUS
approved