login
A026528
a(n) = T(2*n-1, n-1), T given by A026519.
21
1, 2, 8, 28, 111, 436, 1763, 7176, 29521, 122182, 508595, 2126312, 8923136, 37563930, 158563368, 670893296, 2844444761, 12081753410, 51400091942, 218990735668, 934228356445, 3990177231742, 17060699906541, 73017457810032, 312785412844736, 1340988707637776, 5753539499846507
OFFSET
1,2
LINKS
FORMULA
a(n) = A026519(2*n-1, n-1).
a(n) = A026552(2*n-1, n-1).
MATHEMATICA
T[n_, k_]:= T[n, k]= If[k<0 || k>2*n, 0, If[k==0 || k==2*n, 1, If[k==1 || k==2*n-1, Floor[(n+1)/2], If[EvenQ[n], T[n-1, k-2] + T[n-1, k], T[n-1, k-1] + T[n-1, k-2] + T[n-1, k] ]]]]; (* T = A026519 *)
a[n_]:= a[n]= Block[{$RecursionLimit = Infinity}, T[2*n-1, n-1] ];
Table[a[n], {n, 40}] (* G. C. Greubel, Dec 20 2021 *)
PROG
(Sage)
@CachedFunction
def T(n, k): # T = A026519
if (k<0 or k>2*n): return 0
elif (k==0 or k==2*n): return 1
elif (k==1 or k==2*n-1): return (n+1)//2
elif (n%2==0): return T(n-1, k) + T(n-1, k-2)
else: return T(n-1, k) + T(n-1, k-1) + T(n-1, k-2)
[T(2*n-1, n-1) for n in (1..40)] # G. C. Greubel, Dec 20 2021
KEYWORD
nonn
EXTENSIONS
Terms a(20) onward added by G. C. Greubel, Dec 20 2021
STATUS
approved