login
A025474
Exponent of the n-th prime power A000961(n).
30
0, 1, 1, 2, 1, 1, 3, 2, 1, 1, 4, 1, 1, 1, 2, 3, 1, 1, 5, 1, 1, 1, 1, 2, 1, 1, 1, 6, 1, 1, 1, 1, 4, 1, 1, 1, 1, 1, 1, 1, 1, 2, 3, 1, 7, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 5, 1, 8, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 3, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1
OFFSET
1,4
COMMENTS
a(n) is the number of automorphisms on the field with order A000961(n). This group of automorphisms is cyclic of order a(n). - Geoffrey Critzer, Feb 23 2018
LINKS
FORMULA
a(n) = A100995(A000961(n)).
A000961(n) = A025473(n)^a(n); A056798(n) = A025473(n)^(2*a(n));
A192015(n) = a(n)*A025473(n)^(a(n)-1). - Reinhard Zumkeller, Jun 24 2011
a(n) = A001222(A000961(n)). - David Wasserman, Feb 16 2006
MATHEMATICA
Prepend[Table[ FactorInteger[q][[1, 2]], {q,
Select[Range[1, 1000], PrimeNu[#] == 1 &]}], 0] (* Geoffrey Critzer, Feb 23 2018 *)
PROG
(Haskell)
a025474 = a001222 . a000961 -- Reinhard Zumkeller, Aug 13 2013
(PARI) A025474_upto(N)=apply(bigomega, A000961_list(N)) \\ M. F. Hasler, Jun 16 2022
(Python) A025474_upto = lambda N: [A001222(n) for n in A000961_list(N)] # M. F. Hasler, Jun 16 2022
(Python)
from sympy import prime, integer_nthroot, factorint
def A025474(n):
if n == 1: return 0
def f(x): return int(n+x-1-sum(primepi(integer_nthroot(x, k)[0]) for k in range(1, x.bit_length())))
m, k = n, f(n)
while m != k:
m, k = k, f(k)
return list(factorint(m).values())[0] # Chai Wah Wu, Aug 15 2024
CROSSREFS
Cf. A000961 (the prime powers), A025473 (prime root of these), A100995 (exponent of prime powers or 0 otherwise), A001222 (bigomega), A056798 (prime powers with even exponents).
Cf. A117331.
Sequence in context: A348285 A164953 A136622 * A136575 A309898 A193592
KEYWORD
easy,nonn
EXTENSIONS
Edited by M. F. Hasler, Jun 16 2022
STATUS
approved