

A024152


a(n) = 12^n  n^12.


4



1, 11, 3952, 529713, 16756480, 243891793, 2173796352, 13805455393, 68289495040, 277269756129, 938082635776, 2395420006033, 0, 83695120256591, 1227224552173568, 15277275236695743, 184602783918325760
(list;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

0,2


COMMENTS

Conjecture: satisfies a linear recurrence having signature (25, 234, 1222, 4147, 9867, 17160, 22308, 21879, 16159, 8866, 3510, 949, 157, 12).  Harvey P. Dale, Jan 27 2019
The conjecture above is correct. From the general formula for {a(n)} we can see that the roots for the characteristic polynomial are one 12 and thirteen 1's, so the characteristic polynomial is (x  12)*(x  1)^13 = x^14  25*x^13 + 234*x^12  ... + 12, with corresponding recurrence coefficients 25, 234, ..., 12.  Jianing Song, Jan 28 2019


LINKS

Vincenzo Librandi, Table of n, a(n) for n = 0..300
Index entries for linear recurrences with constant coefficients, signature (25,234,1222,4147,9867,17160,22308,21879,16159,8866,3510,949,157,12).


MATHEMATICA

Table[12^nn^12, {n, 0, 30}] (* Harvey P. Dale, Jan 27 2019 *)


PROG

(MAGMA) [12^nn^12: n in [0..20]]; // Vincenzo Librandi, Jun 30 2011


CROSSREFS

Cf. A024012, A024026, A058794, A024040, A024054, A024068, A024082, A024096, A024110, A024124, A024138.  Vladimir Joseph Stephan Orlovsky, Jan 15 2009
Sequence in context: A295192 A295195 A134806 * A265958 A147668 A177804
Adjacent sequences: A024149 A024150 A024151 * A024153 A024154 A024155


KEYWORD

sign,easy


AUTHOR

N. J. A. Sloane


STATUS

approved



