login
A134806
Partition numbers of perfect numbers.
1
11, 3718, 1842351033503159891466
OFFSET
1,1
COMMENTS
a(4) ~ 4.799...*10^95, a(5) ~ 1.849...*10^6444, a(6) ~ 1.852...*10^103237. - Amiram Eldar, Mar 16 2019
a(4) has 96 digits and a(5) has 6445 digits. - Harvey P. Dale, Jan 17 2022
LINKS
FORMULA
a(n) = A000041(A000396(n)).
EXAMPLE
a(2)=3718 because the second perfect number is A000396(2)=28 and the partition number of 28 is A000041(28)=3718.
MATHEMATICA
mers[n_] := 2^(n-1)*(2^n-1); a[n_] := PartitionsP[mers[MersennePrimeExponent[n]]]; a/@Range[4] (* Amiram Eldar, Mar 15 2019, assuming that all the perfect numbers are even *)
PartitionsP[PerfectNumber[Range[5]]] (* Harvey P. Dale, Jan 17 2022 *)
CROSSREFS
Sequence in context: A295192 A359989 A295195 * A024152 A265958 A147668
KEYWORD
bref,nonn
AUTHOR
Omar E. Pol, Nov 13 2007
STATUS
approved