The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A024130 a(n) = 11^n - n^3. 2
 1, 10, 113, 1304, 14577, 160926, 1771345, 19486828, 214358369, 2357946962, 25937423601, 285311669280, 3138428374993, 34522712141734, 379749833580497, 4177248169412276, 45949729863568065, 505447028499288858, 5559917313492225649, 61159090448414539432 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,2 LINKS Vincenzo Librandi, Table of n, a(n) for n = 0..300 Index entries for linear recurrences with constant coefficients, signature (15,-50,70,-45,11). FORMULA From Colin Barker, Oct 11 2018: (Start) G.f.: (1 - 5*x + 13*x^2 + 39*x^3 + 12*x^4) / ((1 - x)^4*(1 - 11*x)). a(n) = 15*a(n-1) - 50*a(n-2) + 70*a(n-3) - 45*a(n-4) + 11*a(n-5) for n>4. (End) MATHEMATICA Table[11^n-n^3, {n, 0, 30}] (* or *) LinearRecurrence[{15, -50, 70, -45, 11}, {1, 10, 113, 1304, 14577}, 30] (* Harvey P. Dale, Jul 30 2018 *) PROG (MAGMA) [11^n-n^3: n in [0..20]]; // Vincenzo Librandi, Jul 01 2011 (PARI) a(n)=11^n-n^3 \\ Charles R Greathouse IV, Jul 01 2011 (PARI) Vec((1 - 5*x + 13*x^2 + 39*x^3 + 12*x^4) / ((1 - x)^4*(1 - 11*x)) + O(x^40)) \\ Colin Barker, Oct 11 2018 CROSSREFS Sequence in context: A181042 A263370 A129866 * A176824 A196983 A199908 Adjacent sequences:  A024127 A024128 A024129 * A024131 A024132 A024133 KEYWORD nonn,easy AUTHOR STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified August 11 04:03 EDT 2020. Contains 336421 sequences. (Running on oeis4.)