login
A024037
a(n) = 4^n - n.
15
1, 3, 14, 61, 252, 1019, 4090, 16377, 65528, 262135, 1048566, 4194293, 16777204, 67108851, 268435442, 1073741809, 4294967280, 17179869167, 68719476718, 274877906925, 1099511627756, 4398046511083, 17592186044394, 70368744177641, 281474976710632, 1125899906842599
OFFSET
0,2
LINKS
Guo-Niu Han, Enumeration of Standard Puzzles, 2011. [Cached copy]
Guo-Niu Han, Enumeration of Standard Puzzles, arXiv:2006.14070 [math.CO], 2020.
FORMULA
From Vincenzo Librandi, Jun 16 2013: (Start)
G.f.: (1 - 3*x + 5*x^2)/((1 - 4*x)*(1 - x)^2).
a(n) = 6*a(n-1) - 9*a(n-2) + 4*a(n-3). (End)
E.g.f.: exp(x)*(exp(3*x) - x). - Elmo R. Oliveira, Sep 10 2024
MATHEMATICA
Table[4^n - n, {n, 0, 30}] (* or *) CoefficientList[Series[(1 - 3 x + 5 x^2) / ((1 - 4 x) (1 - x)^2), {x, 0, 30}], x] (* Vincenzo Librandi, Jun 16 2013 *)
PROG
(Magma) [4^n - n: n in [0..35]]; // Vincenzo Librandi, May 13 2011
(Magma) I:=[1, 3, 14]; [n le 3 select I[n] else 6*Self(n-1)-9*Self(n-2)+4*Self(n-3): n in [1..30]]; // Vincenzo Librandi, Jun 16 2013
(PARI) a(n)=4^n-n \\ Charles R Greathouse IV, Sep 24 2015
CROSSREFS
Cf. numbers of the form k^n - n: A000325 (k=2), A024024 (k=3), this sequence (k=4), A024050 (k=5), A024063 (k=6), A024076 (k=7), A024089 (k=8), A024102 (k=9), A024115 (k=10), A024128 (k=11), A024141 (k=12).
Cf. A140660 (first differences).
Sequence in context: A131262 A171499 A006502 * A281349 A307268 A237608
KEYWORD
nonn,easy
STATUS
approved