OFFSET
0,1
COMMENTS
An Engel expansion of 4/3 to the base 4 as defined in A181565, with the associated series expansion 4/3 = 4/4 + 4^2/(4*13) + 4^3/(4*13*49) + 4^4/(4*13*49*193) + .... Cf. A199115. - Peter Bala, Oct 29 2013
LINKS
Vincenzo Librandi, Table of n, a(n) for n = 0..300
Guo-Niu Han, Enumeration of Standard Puzzles, 2011. [Cached copy]
Guo-Niu Han, Enumeration of Standard Puzzles, arXiv:2006.14070 [math.CO], 2020.
Index entries for linear recurrences with constant coefficients, signature (5,-4).
FORMULA
a(n) = A002001(n+1) + 1.
a(n) = 4*a(n-1) - 3.
First differences: a(n+1) - a(n) = A002063(n).
O.g.f.: (7*x - 4)/((1 - x)*(4*x - 1)). - R. J. Mathar, Jul 14 2008
From G. C. Greubel, Sep 15 2017: (Start)
E.g.f.: 3*exp(4*x) + exp(x).
a(n) = 5*a(n-1) - 4*a(n-2). (End)
MATHEMATICA
LinearRecurrence[{5, -4}, {4, 13}, 50] (* or *) CoefficientList[Series[ (7*x-4)/((1-x)*(4*x-1)), {x, 0, 50}], x] (* G. C. Greubel, Sep 15 2017 *)
PROG
(Magma) [3*4^n+1: n in [0..30] ]; // Vincenzo Librandi, May 23 2011
(PARI) x='x+O('x^50); Vec((7*x-4)/((1-x)*(4*x-1))) \\ G. C. Greubel, Sep 15 2017
CROSSREFS
KEYWORD
nonn
AUTHOR
Paul Curtz, Jul 10 2008
EXTENSIONS
Edited and extended R. J. Mathar, Jul 14 2008
STATUS
approved