The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 Please make a donation to keep the OEIS running. We are now in our 56th year. In the past year we added 10000 new sequences and reached almost 9000 citations (which often say "discovered thanks to the OEIS"). Other ways to donate

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A023871 Expansion of Product_{k>=1} (1 - x^k)^(-k^2). 26
 1, 1, 5, 14, 40, 101, 266, 649, 1593, 3765, 8813, 20168, 45649, 101591, 223654, 486046, 1045541, 2225167, 4692421, 9804734, 20318249, 41766843, 85218989, 172628766, 347338117, 694330731, 1379437080, 2724353422, 5350185097, 10449901555, 20304465729, 39254599832 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,3 COMMENTS In general, if g.f. = Product_{k>=1} 1/(1 - x^k)^(c2*k^2 + c1*k + c0) and c2 > 0, then a(n) ~ exp(4*Pi * c2^(1/4) * n^(3/4) / (3*15^(1/4)) + c1*Zeta(3) / Pi^2 * sqrt(15*n/c2) + (Pi * 5^(1/4) * c0 / (2*3^(3/4) * c2^(1/4)) - 15^(5/4) * c1^2 * Zeta(3)^2 / (2*c2^(5/4) * Pi^5)) * n^(1/4) + c1/12 + 75 * c1^3 * Zeta(3)^3 / (c2^2 * Pi^8) - 5*c0 * c1 * Zeta(3) / (4*c2 * Pi^2) - c2*Zeta(3) / (4*Pi^2)) * Pi^(c1/12) * (c2/15)^(1/8 + c0/8 + c1/48) / (A^c1 * 2^((c0 + 3)/2) * n^(5/8 + c0/8 + c1/48)), where A is the Glaisher-Kinkelin constant A074962. - Vaclav Kotesovec, Nov 08 2017 LINKS Seiichi Manyama, Table of n, a(n) for n = 0..10000 (first 1001 terms from Alois P. Heinz) G. Almkvist, Asymptotic formulas and generalized Dedekind sums, Exper. Math., 7 (No. 4, 1998), pp. 343-359. Vaclav Kotesovec, A method of finding the asymptotics of q-series based on the convolution of generating functions, arXiv:1509.08708 [math.CO], Sep 30 2015, p. 21. FORMULA a(n) = 1/n*Sum_{k=1..n} a(n-k)*sigma_3(k), n > 0, a(0)=1, where sigma_3(n) = A001158(n) = sum of cubes of divisors of n. - Vladeta Jovovic, Jan 20 2002 G.f.: Prod_{n>=1} exp(sigma_3(n)*x^n/n), where sigma_3(n) is the sum of cubes of divisors of n (=A001158(n)). - N-E. Fahssi, Mar 28 2010 G.f. (conjectured): 1/prod(n>=1, E(x^n)^J2(n))) where E(x) = prod(n>=1,1-x^n) and J2(n) = A007434(n). - Joerg Arndt, Jan 25 2011 a(n) ~ exp(4 * Pi * n^(3/4) / (3^(5/4) * 5^(1/4)) - Zeta(3) / (4*Pi^2)) / (2^(3/2) * 15^(1/8) * n^(5/8)), where Zeta(3) = A002117 = 1.2020569031595942853997... . - Vaclav Kotesovec, Feb 27 2015 MAPLE with(numtheory): a:= proc(n) option remember; `if`(n=0, 1,       add(add(d*d^2, d=divisors(j)) *a(n-j), j=1..n)/n)     end: seq(a(n), n=0..35); # Alois P. Heinz, Nov 02 2012 MATHEMATICA max = 31; Series[ Product[ 1/(1-x^k)^k^2, {k, 1, max}], {x, 0, max}] // CoefficientList[#, x]& (* Jean-François Alcover, Mar 05 2013 *) PROG (PARI) m=40; x='x+O('x^m); Vec(prod(k=1, m, 1/(1-x^k)^k^2)) \\ G. C. Greubel, Oct 29 2018 (MAGMA) m:=40; R:=PowerSeriesRing(Rationals(), m); Coefficients(R! ( (&*[1/(1-x^k)^k^2: k in [1..m]]) )); // G. C. Greubel, Oct 29 2018 (SageMath) # uses[EulerTransform from A166861] b = EulerTransform(lambda n: n^2) print([b(n) for n in range(32)]) # Peter Luschny, Nov 11 2020 CROSSREFS Euler transform of squares (A000290). Cf. A000219, A023872-A023878, A294530. Column k=2 of A144048. - Alois P. Heinz, Nov 02 2012 Sequence in context: A119996 A027089 A184437 * A274598 A327682 A171185 Adjacent sequences:  A023868 A023869 A023870 * A023872 A023873 A023874 KEYWORD nonn,changed AUTHOR EXTENSIONS Definition corrected by Franklin T. Adams-Watters and R. J. Mathar, Dec 04 2006 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified November 24 01:45 EST 2020. Contains 338603 sequences. (Running on oeis4.)