OFFSET
1,2
LINKS
G. C. Greubel, Table of n, a(n) for n = 1..4700
FORMULA
a(n) = Sum_{k=0..n-1} Fibonacci(k+2) * A023533(n-k), n >= 1. - G. C. Greubel, Jul 16 2022
MATHEMATICA
Table[Sum[Fibonacci[m+1 -Binomial[j+3, 3]], {j, 0, n}], {n, 0, 5}, {m, Binomial[n+3, 3] +1, Binomial[n+4, 3]}]//Flatten (* G. C. Greubel, Jul 16 2022 *)
PROG
(Magma)
A023533:= func< n | Binomial(Floor((6*n-1)^(1/3)) +2, 3) ne n select 0 else 1 >;
[(&+[Fibonacci(k+2)*A023533(n-k): k in [0..n-1]]): n in [1..50]]; // G. C. Greubel, Jul 16 2022
(SageMath)
def A023655(n, k): return sum(fibonacci(k+1-binomial(j+3, 3)) for j in (0..n))
flatten([[A023655(n, k) for k in (binomial(n+3, 3)+1..binomial(n+4, 3))] for n in (0..5)]) # G. C. Greubel, Jul 16 2022
CROSSREFS
KEYWORD
nonn
AUTHOR
STATUS
approved